691 research outputs found

    Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors

    Full text link
    While visual comparison of directed acyclic graphs (DAGs) is commonly encountered in various disciplines (e.g., finance, biology), knowledge about humans' perception of graph similarity is currently quite limited. By graph similarity perception we mean how humans perceive commonalities and differences in graphs and herewith come to a similarity judgment. As a step toward filling this gap the study reported in this paper strives to identify factors which influence the similarity perception of DAGs. In particular, we conducted a card-sorting study employing a qualitative and quantitative analysis approach to identify 1) groups of DAGs that are perceived as similar by the participants and 2) the reasons behind their choice of groups. Our results suggest that similarity is mainly influenced by the number of levels, the number of nodes on a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception, Similarity, Comparison, Visualizatio

    Octilinear Force-Directed Layout with Mental Map Preservation for Schematic Diagrams

    Get PDF
    We present an algorithm for automatically laying out metro map style schematics using a force-directed approach, where we use a localized version of the standard spring embedder forces combined with an octilinear magnetic force. The two types of forces used during layout are naturally conflicting, and the existing method of simply combining these to generate a resultant force does not give satisfactory results. Hence we vary the forces, emphasizing the standard forces in the beginning to produce a well distributed graph, with the octilinear forces becoming prevalent at the end of the layout, to ensure that the key requirement of line angles at intervals of 45? is obtained. Our method is considerably faster than the more commonly used search-based approaches, and we believe the results are superior to the previous force-directed approach. We have further developed this technique to address the issues of dynamic schematic layout. We use a Delaunay triangulation to construct a schematic “frame”, which is used to retain relative node positions and permits full control of the level of mental map preservation. This technique is the first to combine mental map preservation techniques with the additional layout criteria of schematic diagrams. To conclude, we present the results of a study to investigate the relationship between the level of mental map preservation and the user response time and accuracy

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    The Impact of Shape on the Perception of Euler Diagrams

    Get PDF
    Euler diagrams are often used for visualizing data collected into sets. However, there is a significant lack of guidance regarding graphical choices for Euler diagram layout. To address this deficiency, this paper asks the question `does the shape of a closed curve affect a user's comprehension of an Euler diagram?' By empirical study, we establish that curve shape does indeed impact on understandability. Our analysis of performance data indicates that circles perform best, followed by squares, with ellipses and rectangles jointly performing worst. We conclude that, where possible, circles should be used to draw effective Euler diagrams. Further, the ability to discriminate curves from zones and the symmetry of the curve shapes is argued to be important. We utilize perceptual theory to explain these results. As a consequence of this research, improved diagram layout decisions can be made for Euler diagrams whether they are manually or automatically drawn

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    Evaluation of two interaction techniques for visualization of dynamic graphs

    Full text link
    Several techniques for visualization of dynamic graphs are based on different spatial arrangements of a temporal sequence of node-link diagrams. Many studies in the literature have investigated the importance of maintaining the user's mental map across this temporal sequence, but usually each layout is considered as a static graph drawing and the effect of user interaction is disregarded. We conducted a task-based controlled experiment to assess the effectiveness of two basic interaction techniques: the adjustment of the layout stability and the highlighting of adjacent nodes and edges. We found that generally both interaction techniques increase accuracy, sometimes at the cost of longer completion times, and that the highlighting outclasses the stability adjustment for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore