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On the Impact of Layout Quality
to Understanding UML Diagrams:

Size Matters

Harald Störrle

Dept. of Applied Mathematics and Computer Science
Technical University of Denmark, hsto@dtu.dk

Abstract. Practical experience suggests that usage and understanding
of UML diagrams is greatly affected by the quality of their layout. While
existing research failed to provide conclusive evidence in support of this
hypothesis, our own previous work provided substantial evidence to this
effect. When studying different factors like diagram type and expertise
level, it became apparent that diagram size plays an important role,
too. Since we lack an adequate understanding of this notion, in this
paper, we define diagram size metrics and study their impact to modeler
performance. We find that there is a strong negative correlation between
diagram size and modeler performance. Our results are highly significant.
We utilize these results to derive a recommendation on diagram sizes that
are optimal for model understanding.

1 Introduction

The Unified Modeling Language (UML) has been the “lingua franca of software
engineering” for over a decade now. It is a generally held belief that visual lan-
guages are superior to textual languages in that they support human perceptual
and thought processes, and that this is also true for the UML, in fact, that this is
a major reason for the success of UML. However, there are actually few research
results to support this belief. There is a large body of experimental results on
the layout of UML class diagrams and how it affects human understanding and
problem solving, but the findings are ambiguous, and sometimes unintuitive. In
particular, only very small effects have been found in vitro. For instance, Eichel-
berger and Schmid note that “We could not identify [...] a significant impact [by
diagram quality].” (cf. [9, p. 1696]).

On the other hand, practical experience in industrial software projects sug-
gests a much higher impact of good or bad layout, and previous work by the
author strongly supports this hypothesis (see [28, 29]). Inspection of our data
and a qualitative study with our study participants suggested, however, that
the size of the models portrayed in the diagrams might be a relevant factor.
In order to study this question, we define a precise notion of diagram size and
re-examine existing data sets of substantial size (78 participants, well over 1200
measurements). Our working hypothesis is that modeler performance correlates



negatively with diagram size. We also hypothesize, that layout quality1 matters
more with increasing diagram size: small diagrams are easy to use irrespective
of the layout quality simply because they are small; modelers simply cope with
bad layout. With increasing diagram size, however, the visual and/or mental
capacity of a modeler is stretched, so that the layout quality impacts modeler
performance. In other words, layout quality matters more, and is more apparent
for larger diagrams. We analyze the diagram size metrics and various modeler
performance indicators, including errors, preference/assessment, and cognitive
load (cf. [13]).

If we can indeed correlate diagram size with modeler performance, however,
we can exploit this relationship conversely to determine limits to the size of
diagrams that afford being understood easily and correctly by modelers. Such
limits might be helpful as guidelines to inexperienced modelers, such as students.

2 Related Work

The layout of graphs (in the mathematical sense) has been a longstanding re-
search challenge, both with respect to automatic layout and to various aspects
of usability, e.g., diagram comprehension, user preferences, and diagrammatic
inference. Based on the rich knowledge on general graphs, research on the layout
of UML has started with those of UML’s notations that are closest to graphs,
namely, class diagrams (cf. [23, 7, 10, 33, 18]), and, to a lesser extent, communi-
cation diagrams (see e.g. [17, 20] who use UML 1 terminology). Other types of
UML diagrams, in contrast, have only attracted little interest so far (e.g. use
case diagrams [8], or sequence diagrams, cf. [2, 32]). There is only little work
on the Business Process Model and Notation (see [5]), and even less on UML
activity diagrams [21].

Research on aspects of UML class diagrams has mostly focused on the impact
of isolated low-level layout criteria such as line bends, crossings, and length.
Unsurprisingly, each of these properties has little impact by themselves and are
hard to prioritize. The more elusive higher levels like layout patterns, diagram
flow, and the correspondence between a diagram and its intended message seem
to have not yet been studied empirically at all. The influence of the expertise
level, on the other hand, has been studied [1, 22].

The main focus of previous work on UML diagram types and their layout
has been with one of four aspects: diagram comprehension (cf. [25, 26, 15, 20]
and/or user preference (cf. [18, 31]), automatic layout (cf. [7, 10, 16, 8, 4]), or one
of a variety of diagram inference tasks, e.g., program understanding based on
visualizations (cf. [32]), or the role of design patterns in understanding (cf. [26,
27]).

Most research uses controlled experiments and evaluate user performance
using paper questionnaires, or online surveys. Only a few contributions have
used other methods, most notably eye tracking (see [3, 33, 26]). After using both

1 We will elaborate on the notion of layout quality in Section 3 below.
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methods for essentially the same experiment, Sharif et al. have concluded that
these two methods are mostly complementary wrt. comprehension tasks (cf.
[24]). Thus, eye tracking is only favorable for a tightly restricted set of research
questions, in particular when taking into account the considerable cost and effort
involved. Having said that, most questionnaire-based approaches employ only
very few participants in their experiments, typically in the range of 15 to 30, with
the notable exceptions of [25], [19] and [2] involving 45, 55 and 78 participants,
respectively. The research done for the current paper involved 78 participants.

3 “Good” layout of UML diagrams

In this section, we will briefly review the knowledge on aesthetic criteria for
the layout of UML diagrams and its effects on model understanding. A detailed
discussion of aesthetic criteria for class diagrams is found in [7, p. 54–65], a
recent survey of empirical results on layout criteria is found in [9]. Wong and
Sun [32] provide an overview of these criteria from a cognitive psychology point
of view, along with an evaluation of how well these principles are realized in
several UML CASE tools. Purchase et al. discuss aesthetic criteria with a view
to the layout of UML class and communication diagrams (cf. [18, 17]) and also
provide sources to justify and explain these criteria (cf. [15]). Eichelberger [6]
also discusses these criteria at length, and shows how they can be used in the
automatic layout of UML class diagrams.

Elements of good layout
 - Join/cluster similar elements
 - Orthogonal arrangement
 - Place elements in flow

Elements of bad layout
 - Edge crossings and bends
 - Overlaping/obscuring
 - Variations of visual variables

Fig. 1. Examples of good/bad layouts of a diagram as used in the study
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The layout of UML diagrams is governed by four levels of design principles.
First, there are the general principles of graphical design and visualization that
apply to all kinds of diagrams, and probably any kind of visualization. For in-
stance, in a good layout, elements should not obscure each other, the Gestalt
principles should be respected [12], text should be shown in a readable size,
elements should be aligned (e.g., on a grid), and there should be sparing and
careful use of colors, and different fonts or styles.

Second, there are layout principles applying to all structures that can be
considered as a graph, mathematically speaking. Thus, good layouts should avoid
or minimize crossings, bends, and length of lines. Most of the empirical research
on UML diagrams focuses on principles from this level, e.g., [23, 7, 10, 33, 18].

Third, there are layout principles that apply mostly only to notations like
those found in UML. For instance, diagrams with some inherent ordering of ele-
ments should maintain and highlight that ordering as visual flow. Visual clutter
should be reduced by introducing symmetry when possible. For instance, similar
edges should be joined, similar elements should be aligned and grouped, and so
on. In UML, this means that if a class has several subclasses, it might be helpful
to group and align the subclasses and join the arcs indicating the inheritance-
relationship. Another application is found in activity diagrams, where several
consequences of a decision could be aligned and grouped.

Fourth, there is the level of pragmatics, that is, support for underlining the
purpose of a diagram in order to better address the audience. Items may be
highlighted by color, size, or position to guide and direct the attention of readers.
On this level, rules and guidelines from lower levels may be put aside to better
serve the paramount purpose of conveying the message and telling whatever
story the diagram designer intends to tell.

In order to develop algorithms for creating automatic layouts that are per-
ceived as being helpful (or “good”) by human modelers, detailed knowledge
about the individual criteria, their relative and absolute impact, and their for-
malization is needed. So, it is not surprising that most of the empirical research
on UML diagrams has so far focused on studying individual principles, with
an emphasis on the second group (cf. [23, 7, 10, 33, 18]). For instance, work by
Purchase et al. has shown that there are many such criteria with varying de-
grees of impact (see e.g. [18]), though all of them seem to have a rather small
impact with findings that are not highly or not at all statistically significant.
Also, the ranking and contribution of these criteria may vary across different di-
agram types. Even between class and communication diagrams, which are rather
close relatives as far as concrete syntax is concerned, [18, pp. 246] shows notable
differences in the ordering and impact of layout criteria. Thus, other notations
that share even less commonalities with class diagrams (e.g., activity, use case,
or sequence diagrams) may need a completely different set of criteria.

For humans creating diagram layouts, on the other hand, a set of compara-
tively vague guidelines together with some instruction is often good enough for
practical purposes. Humans may (and will) mix and match criteria from all four
levels as appropriate and create what they and their peers perceive as high qual-
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ity UML diagrams. Of course, there is still a large degree of subjectivity in this
definition, but it does capture the intuition (see [28, 29] for detailed evidence).
Therefore, in the remainder of this paper, we will call a diagram (layout) good, if
it mostly adheres to the criteria from all these levels, and bad if it mostly violates
them. Generally speaking, in terms of the four levels of layout rules described
above, if a diagram layout does not (significantly) violate any of the rules on the
first two levels but (more or less) adopts the rules described in the latter two
levels we call it a “good” layout. Conversely, we call a diagram layout “bad” if
it consistently violates these rules.

4 Size of UML diagrams

Surprisingly, there seems to be no metric for the size of UML diagrams that we
can use as a basis in our correlation. So, we have to define such a metric. We
will visit three of them to find the most appropriate, starting with the simplest
conceivable approach of simply counting the number of diagram elements (not
to be confused with the number of model elements presented or implied in the
diagram). This metric has the advantage of being straightforward to compute,
but does not take into account differences among the potential elements of a
diagram.

Arguably, this metric is not just simple, but too simple, as it implies that all
diagram elements contribute the same amount of complexity and information to
the diagram. If this assumption does not hold true, we could introduce a weight
factor for the individual types of elements to compensate for differences between
different element types. It is not quite clear, however, what the ”right” weights
should be, and how to obtain them.

As a pragmatic approach to defining weights uniformly, we use the approach
pursued in [30], and provide a simple classification of the elements of UML dia-
grams into lines, shapes, and labels, and assign one of three complexity levels to
each of them (simple, medium, and large), according to the amount of cognitive
load we may expect involved in processing them based on the laws of Gestalt
psychology (cf. [12]). For instance, a plain association might be considered a sim-
ple line, an association with an adornment on one side (such as a composition or
a directed association) might be considered a line of medium complexity, and an
association with adornments on both sides might be considered a line with large
complexity. Lines with several legs could be understood as sets of lines, e.g., an
association with two adornments and two corners decomposes into one simple
line and two medium lines (one adornment each).

– Lines include all kinds of straight or curved lines. Lines made up of n different
segments are considered as n different lines. Decorations at the beginning or
end of a line or line segment (such as arrow heads) are considered to be an
integral part of the line but increase its complexity.

– Shapes include the basic geometric shapes like circles, rectangles, and ellipses
as simple elements. Shapes that occupy a large area of a diagram and contain
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other shapes are considered to be of medium complexity, while the more
complex iconic shapes like a stick-person or a lightning-arrow are considered
complex shapes.

– Labels are strings of text that are attached to or positioned relative to other
elements. Labels are restricted to single lines. Single characters or short
names are considered simple, long names are considered as medium com-
plex, and structured expressions like sentences or operation declarations are
considered to be highly complex.

With these conventions, we define diagram size as the number of elements
in a diagram, weighted by their complexity (e.g., one might define the weights
S: 1, M: 1.5, L: 2). This metric is substantially more difficult to compute than
our first proposal above, but it reflects the intuition more accurately, and could
thus be expected to be more realistic, and provide higher validity.

Still, one might argue that the second approach is too simplistic, as the
influence of diagram types is not considered. After all, every UML diagram
establishes a context that restricts the admissible vocabulary in this diagram to
a small subset that is available for the given diagram type. For instance, there are
many more notational elements in the UML sub-language of Activity Diagrams
than there are in the sub-language of Use Case Diagrams. Thus, according to
classic information theory, the weight of any element in an Activity Diagram
ought to be higher than the weight of the elements in Use Case Diagrams.

In analogy with classic information theory, the number of choices should
determine the information content (i.e., the weight) of a diagram element. We
compute the information content of diagram elements as the binary logarithm of
the set of similar elements a modeler may chose from, per diagram type. So, for
every diagram element e from a class E of diagram elements in a given diagram
type, we compute weight(e) = log2(|E|). Using this as a weight factor provides
a third metric of diagram size.

Note that we disregard topological information (i.e., containment). Thus,
our metric is not necessarily a measure of diagram complexity or information
content. Clearly, we will need to validate these diagram size metrics. So, we
computed the sizes according to each measure with some (sensible) variations
for the weights of the second metric for the same 38 diagrams that have been
used in [28, 29]. We compared the outcomes using Pearson’s product-moment
correlation. Surprisingly, we found that all three measures show a very high
level of correlation (between 0.967 and 0.992) with very high confidence (p <
10−15). That is to say: the measures do not yield significantly different results.
In other words, it does not matter which metric we use. So, we decide for the
one that offers the practical advantage of being simple to compute, that is, in
the remainder we simply count the number of diagram elements as a metric for
diagram size.
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5 Experimental setup

We used [14] as a guideline for our experimental setup. We presented the partici-
pants with paper questionnaires showing one UML diagram and ten questions on
the diagram, recording four categories of answers (right, wrong, “don’t know”,
and no answer), time used, subjective assessment of the task difficulty (three
questions in experiment D, and four questions in experiments E and F). The
questionnaires also contained a separate sheet where we asked for personal pref-
erence, and subjective assessment of layout quality. The dependent variables are
accuracy and speed of comprehension, and preference. The independent vari-
ables are the experience level of the participants (beginner/advanced/elite), the
diagram type (class, sequence, state machine), the diagram size (small/large),
and, of course, the layout quality (good/bad). Altogether, we ran three experi-
ments with together 78 participants, and a completion rate of 80%. Minor ad-
justments and corrections were made as compared to the experimental setup
reported in [28]. In the remainder, we will focus on the setup of the second and
third experiment. The details of the setup are discussed below; a summary of
the experimental setup and study design is shown in Fig. 2.
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Fig. 2. The experimental setup and study design

5.1 Model population

The models used in the experiments have been created by students as part of
their coursework in a requirements engineering course taught by the author.
These models belonged to one of three case studies and have been prepared by
teams of 4-7 students over a period of twelve weeks with an approximate effort of
600-800 working hours for each model. For each case study, two or three teams
worked in parallel; for each case study, the model of the team achieving the
highest grade was selected. This procedure ensured several desirable properties.
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Firstly, by using models created by students undergoing the same course
and being awarded the same grade, very similar levels of modeler capability
and model quality may be assumed. Furthermore, the models used exhibit a
large degree of methodological homogeneity in that they are very similar in
terms of model structure and size, model and diagram usage, and frequency
distribution of diagram types. Also, in the models used in our experiments, model
elements had their original, semantic-bearing names, whereas in some previous
experiments this vital aspect seems to have been deliberately eliminated by
giving meaningless synthetic names to model elements (cf. [9, p. 1697]). Secondly,
due to the project oriented nature of the course, we can assert that the models
underlying our experiment are realistic in the sense that their size, quality, and
purpose are very close to industrial reality. Finally, all of these models used exist
at the same stage of the software life cycle, namely requirements analysis.

In contrast, all earlier works seem to have used only a single case study
and model, and most work has been carried out on models at the design or
implementation level. Also, there is no indication in previous work as to how
close to the reality of practical software development the underlying models are.

5.2 Diagram samples and questions

From each of the three model types selected from the model population, we
chose one large and one small example of class, state machine, and interaction
diagrams with particularly good or bad layout. The quality of layout is measured
by the adherence or non-adherence to a number of layout rules discussed in the
related work (see Section 3). This step yielded three models (one from each
case study) for each of the six buckets, that is, the categories of small/large
diagrams of types class/activity/use case. So we arrived at 18 models altogether
which were then trimmed to fit onto a questionnaire page. We then derived two
variants from each diagram exhibiting good and bad layout (i.e., two different
treatments), respectively, yielding 36 different diagrams (see Fig. 1 above for
good/bad layouts of a diagram; a sample questionnaire can be found at www2.

compute.dtu.dk/~hsto/downloads/q2.pdf).
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5.3 Participants and completion rates

The participants for experiments 1 and 2 were recruited among students from
different computer science classes at the Danish Technical University in Lyn-
gby. The participants for experiment 3 were recruited among elite graduate stu-
dents and staff from the University of Augsburg.2 All participants took part
voluntarily with no reward or threat and under complete anonymity, i.e., it was
clear to students that their performance had no influence whatsoever on their
grades, for instance. Immediately before the experiment, all participants received
a ten-minute introduction to those parts of the UML that were covered in the
experiment.

The participants showed a wide spread in UML knowledge. In all experi-
ments, in the core parts of the questionnaire, nine diagrams were presented and
ten questions were asked per diagram. We saw an overall completion rate of
these core questions of over 80%. See Table 1 for more details on the population.

Table 1. Demographic data on the participants of all experiments, ”completion” refers
to the completion rate on core questions

Experiment male female all completion

1 (BEng) 29 3 33 75.1%

2 (MSc) 29 5 34 82.6%

3 (Elite) 10 1 11 90.1%

all 68 9 78 82.6%

6 Results

6.1 Correlations between diagram size and modeler performance

As outlined above, our initial hypothesis was that there is a correlation between
diagram size and modeler performance in understanding these diagrams. Plot-
ting the diagram size as defined above against the performance on all diagrams
yielded the scatter plots shown in Fig. 4. Adding trend-lines reveals that the cor-
relation is indeed present: with increasing diagram size, the mean score decreases
while the variance increases. Similarly, perceived diagram clarity decreases with
increasing diagram size. Surprisingly, there is also a positive correlation between
diagram size and perception of layout quality.

We then tested properly for correlations between diagram size and mod-
eler performance. We used the simple diagram size metric, as discussed above,

2 These experiments correspond to the experiments D, E, and F reported before in
[29].
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Fig. 4. Plots of various measures of modeler performance against diagram size (clock-
wise from left bottom): score mean, score variance, subjective assessment of layout
quality and diagram clarity. The trend-lines are created from linear models.

and correlated it with all measures of modeler performance observed in our ex-
periments. We calculated the correlations between diagram size and modeler
performance using Pearson’s product-moment correlation (cor.test in R). We
assess the effect size of a correlation of up to 0.3 to as small (S), as large (L) for
values over 0.4, and as medium (M) for values in between, see Table 2.

It is quite clear that there is indeed a large correlation between increasing
diagram size and decreasing mean scores. This is in line with the observation
that the variance increases with diagram size: increased difficulty will provoke a
greater spread of results. We have seen a similar effect in our previous studies,
where the natural variance in capability of the population becomes more visible
when testing poor layouts because these help less with diagram understanding.
For the good layouts, individual performance differences matter less, as they are,
partially, leveled by the helpful layout. This objective measure is further con-
firmed by the subjective measure of asking the participants to assess the clarity of
the diagrams: uniformly large correlations are found between increasing diagram
size and decreasing clarity. Yet more confirmation is found when considering the
subjective assessment of cognitive load: with increasing size, cognitive load as
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Table 2. Pearson’s product-moment correlation between diagram size and modeler
performance, measured as mean and variance of objective performance (correct an-
swers, i.e., score), different subjective assessments, and cognitive load measures. In
each cell, the first number is Pearsons’s r indicating the size of the correlation, the
letter S/M/L classifies the effect size, the next number is the p-value, and the stars
indicate its significance level.

Objective Score Mean Score Variance
Performance r ES p SIG r ES p SIG

All Diagrams −0.423 L 0.010 ** 0.424 L 0.010 **

Bad Layout −0.491 L 0.039 * 0.534 L 0.023 *

Good Layout −0.396 M 0.104 * 0.303 M 0.222

Diagram Layout Quality Layout Clarity
Assessment r ES p SIG r ES p SIG

All Diagrams 0.538 L < 0.001 *** −0.508 L 0.002 **

Bad Layout 0.521 L 0.027 * −0.563 L 0.015 *

Good Layout 0.573 L 0.013 * −0.766 L 0.0002 ***

Cognitive Diagram Understanding Diagram Complexity
Load r ES p SIG r ES p SIG

All Diagrams −0.338 M 0.044 ** −0.081 S 0.640

Bad Layout −0.452 L 0.060 * −0.313 M 0.207

Good Layout −0.197 S 0.434 0.152 S 0.548

expressed by subjective assessment of task complexity increases, too. Observe
that subjective assessment has been found to be highly correlated with objective
measures of cognitive load [11], and that both questions asked to measure cog-
nitive load exhibit similar patterns. The negative correlation between diagram
size and perceived diagram complexity might be an experimental artifact since
it has no statistic significance and relatively small effect sizes.

We also see a positive correlation between diagram size and layout quality,
which seems to contradict our hypothesis. We explain this by observing that
it is literally obvious to most modelers that a diagram has high quality when
presented with one. Answering this question for a poor diagram, on the other
hand, is much harder, as it requires knowledge about what makes a poor diagram,
too. In particular novice modelers have yet to appreciate the negative impact of
line crossings, bends, obscuring elements and so forth.

All of these effects are substantially stronger for poor layouts than for good
layouts. This is in support of our initial hypothesis that layout quality matters
more with increasing diagram size. In other words: small diagrams are easy to use
anyway, so bad layout can be easily compensated. For larger diagrams, however,
when the visual and/or mental capacity of a modeler is reached or exceeded,
the impact of layout quality becomes visible: layout quality matters more, and
is more apparent for larger diagrams.

11



The results for objective measures and subjective assessments seem to provide
stronger results than the results for cognitive load measures, although this might
be attributable to factors outside of the experimental control.

6.2 Correlations differentiated by expertise level

Table 3. Pearson’s product-moment correlation between diagram size and modeler
performance, controlled for expertise level.

Objective Score Mean (low/high expertise)
Performance r ES p SIG r ES p SIG

All Diagrams −0.494 L 0.002 ** 0.018 S 0.917

Bad Layout −0.397 M 0.103 . −0.173 S 0.493

Good Layout −0.615 L 0.007 ** 0.243 M 0.331

Objective Score Variance (low/high expertise)
Score r ES p SIG r ES p SIG

All Diagrams 0.290 M 0.086 . 0.053 S 0.764

Bad Layout 0.254 M 0.309 0.204 M 0.432

Good Layout 0.343 M 0.163 −0.085 S 0.736

Diagram Layout Quality (low/high expertise)
Assessment r ES p SIG r ES p SIG

All Diagrams 0.569 L 0.0003 *** 0.484 L 0.003 **

Bad Layout 0.534 L 0.023 * 0.516 L 0.028 *

Good Layout 0.615 L 0.007 ** 0.536 L 0.022 *

Diagram Layout Clarity (low/high expertise)
Assessment r ES p SIG r ES p SIG

All Diagrams −0.525 L 0.001 *** −0.440 L 0.007 **

Bad Layout −0.742 L 0.0004 *** −0.698 L 0.001 **

Good Layout −0.554 L 0.017 * −0.570 L 0.014 *

Cognitive Diagram Understanding (low/high expertise)
Load r ES p SIG r ES p SIG

All Diagrams −0.313 M 0.063 . −0.199 S 0.245

Bad Layout −0.184 S 0.465 −0.064 S 0.800

Good Layout −0.421 L 0.082 . −0.306 M 0.218

Cognitive Diagram Complexity (low/high expertise)
Load r ES p SIG r ES p SIG

All Diagrams −0.082 S 0.634 0.042 S 0.808

Bad Layout 0.133 S 0.600 0.251 M 0.315

Good Layout −0.349 M 0.156 −0.134 S 0.595
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Previous work by Abraho, Ricca and others [1, 22] suggests that the expertise
level is important in diagram understanding, and when controlling for expertise
levels, more interesting phenomena become visible (see Table 3). In this table, we
have used the same arrangement of values in cells as in Table 2, but have split the
data between modelers with lower and higher levels of expertise (left and right,
respectively). First of all, let us establish that there is indeed a performance
difference in expertise level in our sub-populations. Using a one-sided Wilcoxon-
test to compare the average score on good layouts for the two sub-populations, we
can reject the hypothesis that the sub-populations exhibit the same performance
with very high significance (p = 0.00013). When comparing the scores, score
variances, and the cognitive load measures, participants with high expertise level
are much less affected by increasing diagram size than participants with lower
expertise levels. This holds irrespective of layout quality, but is even stronger
for poor layouts. Some of these findings are not statistically significant, however,
since analyzing the sub-populations separately drastically decreases the number
of data points. Still, all correlation show the same pattern and tendencies which
does add evidence to our earlier observations.

Even with the reduced population size we find significant or highly significant
correlations between increasing diagram size and reduced layout clarity, partic-
ularly for poor layout where correlation exceeds −0.7 (p < 10−3). Again, the
effect is larger for poor layouts than for good ones, and again, the same pattern
is found in the cognitive load measures (“Understanding” and “Complexity”),
though the latter findings are not statistically significant.

6.3 Optimal diagram size

Based on our data, we can compute trend-lines of the correlations, as shown in
Fig. 4 (bottom right). Computing a linear model yields coefficients of a linear
equation (intercept = 7.21, slope = −0.014). This allows us to compute the dia-
gram sizes at which the study participants answered a given number of questions
about the diagrams correctly. It seems natural to use the boundaries of the sec-
ond and third quartile as lower bound, optimum, and upper bound of expected
performance. The values for these boundaries and a geometric interpretation of
the relationship between quantiles of score and optimal size is given in Fig. 5.

In practice, the quality of diagrams and modelers will vary widely. When
disregarding these factors, we conclude that diagrams with approximately 20 to
60 diagram elements should allow average modelers to answer approximately half
of the questions about the model represented by the diagram correctly. Thus,
an objective recommendation for boundaries of diagram size would be in this
range, too. It would be trivial to implement such a function in a modeling tool,
which could provide guidance to modelers.

7 Threats to validity

Internal validity Great care has been taken to provide systematic permutations
of diagrams, questions, and sequences thereof to avoid bias by carry-over ef-
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Fig. 5. The red trend-line visualizes the correlation between scores and diagram
sizes. Geometrically speaking, this means to mirror the distribution of scores at the
size score trend-line. Observe that high scores correlate to small diagram sizes.

fects (“learning”). Any such effects would occur similarly for all treatments and,
thus, would cancel each other out. Participants have been assigned to tasks ran-
domly. We can also safely exclude bias through the experimenter himself, since
there were only written instructions that apply to all conditions identically. We
correlated it with different measures, each of which was measured in multiple
different ways to reduce the danger of introducing bias through the experimental
procedure.

External validity The selection of the models and diagrams may be a source
of bias. However, we applied objective and rational criteria to the selection,
and compared to previous similar studies, we used three different diagram types
(rather than just one or two), a competitively large number of models, and very
realistic models. The layouts for the models were, to a large degree, used-as-
found, that is, they were created under realistic conditions by people unconnected
to these experiments. On top of that, our study is based on a comparatively
large number of participants. So, the present study is certainly among the best
validated among studies of its kind and we expect our results to be valid for
UML models in general, i.e., we expect a markedly higher degree of external
validity than previous contributions can claim.

Conclusion validity We have used non-parametric tests, where applicable, to
compensate for skewed distributions in our data. We have consistently provided
statistical significance level and the effect size with our inferences. Due to the
(relatively) high number of study participants, most of the inferences we present
are equipped with high or very high levels of statistic significance and large effect
sizes, using Cohn’s thresholds for the effect size levels for want of any better
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guideline. When controlling for sub-populations, the significance levels decrease,
but keep showing the same patterns which is sufficient for the claims we make
based on these data. We do assume a linear correlation between variables prima
facie, but this is justified by an earlier ANOVA-analysis where the squared terms
were much too small to have a significant impact on our study.

Construct validity Gopher and Braune [11] show that subjective assessments of
cognitive load is accurate in the sense that it correlates strongly with objective
measures such as skin conductivity, pupillary response, or heart rate. Catego-
rizing layout quality as good and bad was done based on existing findings on
layout understanding and aesthetics (see Section 2 for more details), which in
turn are grounded in the well-established findings of Gestalt psychology.

There is no established metric for ”diagram size” in the context of UML or
similar notations. We have developed different metrics but found that they all
correlate highly. Thus, we have opportunistically adopted the simplest of these
metrics. There is no particular evaluation as to whether this construct is valid.

8 Conclusion

In earlier work, we established that layout quality does impact the understanding
of UML diagrams [28], and that this applies irrespective of diagram type, but
dependent on modeler expertise [29]. We could so far not answer the question
whether diagram size had an influence, and, if so, what its magnitude would be.
Thus, in this paper, we developed measures for the size of UML diagrams. Since
they correlate almost perfectly on a population of 38 diagrams, we concluded
that it is irrelevant which of these diagram size metrics is used. Thus we chose
the pragmatically simplest metric.

Using this diagram size metric, we re-analyzed existing data sets and find
strong evidence in support of our hypothesis. We conclude that high layout
quality is particularly helpful for large diagrams, and that it is particularly help-
ful for modelers with low expertise. Based on these findings, we derive pragmatic
guidelines on the optimal size of diagrams that are very easy to apply in tools,
based on objective findings, and promise to be beneficial to many modelers.

The experimental procedure has been designed carefully to exclude bias of
any kind, learning effects, and distortion. We have included a relatively large
number of participants (n = 78) in our experiments, as a further contribution
to validity. Most of the tests and correlations we have computed are equipped
with high or very high levels of statistical significance. We consistently report
completion rates, effect sizes, and similar data to allow scrutinizing our results,
and allow other scientists to conduct secondary research based on our work.
Thus we conclude, that our findings have a high level of validity.

Consistent with previous findings reported in [28, 29], a stronger effect is seen
in subjective measures (cognitive load, assessment) than in objective measures
(score), pointing to cognitive mechanisms to cope with diagram complexity. We
hypothesize that increasing extrinsic cognitive load will lead to stronger effects
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in the objective measures. One way of doing this is through dual-stimulus ex-
periments.
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