18 research outputs found

    Arabidopsis PLETHORA transcription factors control phyllotaxis.

    Get PDF
    The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis

    DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest

    No full text
    International audienceWe present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α\alpha (Lyα\alpha) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420000420\,000 Lyα\alpha forest spectra and their correlation with the spatial distribution of more than 700000700\,000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rdr_d), we measure the expansion at zeff=2.33z_{\rm eff}=2.33 with 2% precision, H(zeff)=(239.2±4.8)(147.09 Mpc/rd)H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff)=(5.84±0.14)(rd/147.09 Mpc)D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc}) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters

    DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars

    No full text
    International audienceWe present the DESI 2024 galaxy and quasar baryon acoustic oscillations (BAO) measurements using over 5.7 million unique galaxy and quasar redshifts in the range 0.1<z<2.1. Divided by tracer type, we utilize 300,017 galaxies from the magnitude-limited Bright Galaxy Survey with 0.1<z<0.4, 2,138,600 Luminous Red Galaxies with 0.4<z<1.1, 2,432,022 Emission Line Galaxies with 0.8<z<1.6, and 856,652 quasars with 0.8<z<2.1, over a ~7,500 square degree footprint. The analysis was blinded at the catalog-level to avoid confirmation bias. All fiducial choices of the BAO fitting and reconstruction methodology, as well as the size of the systematic errors, were determined on the basis of the tests with mock catalogs and the blinded data catalogs. We present several improvements to the BAO analysis pipeline, including enhancing the BAO fitting and reconstruction methods in a more physically-motivated direction, and also present results using combinations of tracers. We present a re-analysis of SDSS BOSS and eBOSS results applying the improved DESI methodology and find scatter consistent with the level of the quoted SDSS theoretical systematic uncertainties. With the total effective survey volume of ~ 18 Gpc3^3, the combined precision of the BAO measurements across the six different redshift bins is ~0.52%, marking a 1.2-fold improvement over the previous state-of-the-art results using only first-year data. We detect the BAO in all of these six redshift bins. The highest significance of BAO detection is 9.1σ9.1\sigma at the effective redshift of 0.93, with a constraint of 0.86% placed on the BAO scale. We find our measurements are systematically larger than the prediction of Planck-2018 LCDM model at z<0.8. We translate the results into transverse comoving distance and radial Hubble distance measurements, which are used to constrain cosmological models in our companion paper [abridged]

    DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars

    No full text
    International audienceWe present the DESI 2024 galaxy and quasar baryon acoustic oscillations (BAO) measurements using over 5.7 million unique galaxy and quasar redshifts in the range 0.1<z<2.1. Divided by tracer type, we utilize 300,017 galaxies from the magnitude-limited Bright Galaxy Survey with 0.1<z<0.4, 2,138,600 Luminous Red Galaxies with 0.4<z<1.1, 2,432,022 Emission Line Galaxies with 0.8<z<1.6, and 856,652 quasars with 0.8<z<2.1, over a ~7,500 square degree footprint. The analysis was blinded at the catalog-level to avoid confirmation bias. All fiducial choices of the BAO fitting and reconstruction methodology, as well as the size of the systematic errors, were determined on the basis of the tests with mock catalogs and the blinded data catalogs. We present several improvements to the BAO analysis pipeline, including enhancing the BAO fitting and reconstruction methods in a more physically-motivated direction, and also present results using combinations of tracers. We present a re-analysis of SDSS BOSS and eBOSS results applying the improved DESI methodology and find scatter consistent with the level of the quoted SDSS theoretical systematic uncertainties. With the total effective survey volume of ~ 18 Gpc3^3, the combined precision of the BAO measurements across the six different redshift bins is ~0.52%, marking a 1.2-fold improvement over the previous state-of-the-art results using only first-year data. We detect the BAO in all of these six redshift bins. The highest significance of BAO detection is 9.1σ9.1\sigma at the effective redshift of 0.93, with a constraint of 0.86% placed on the BAO scale. We find our measurements are systematically larger than the prediction of Planck-2018 LCDM model at z<0.8. We translate the results into transverse comoving distance and radial Hubble distance measurements, which are used to constrain cosmological models in our companion paper [abridged]

    DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest

    No full text
    International audienceWe present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α\alpha (Lyα\alpha) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420000420\,000 Lyα\alpha forest spectra and their correlation with the spatial distribution of more than 700000700\,000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rdr_d), we measure the expansion at zeff=2.33z_{\rm eff}=2.33 with 2% precision, H(zeff)=(239.2±4.8)(147.09 Mpc/rd)H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff)=(5.84±0.14)(rd/147.09 Mpc)D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc}) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters

    DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest

    No full text
    International audienceWe present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α\alpha (Lyα\alpha) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420000420\,000 Lyα\alpha forest spectra and their correlation with the spatial distribution of more than 700000700\,000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rdr_d), we measure the expansion at zeff=2.33z_{\rm eff}=2.33 with 2% precision, H(zeff)=(239.2±4.8)(147.09 Mpc/rd)H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff)=(5.84±0.14)(rd/147.09 Mpc)D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc}) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters

    DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest

    No full text
    International audienceWe present the measurement of Baryon Acoustic Oscillations (BAO) from the Lyman-α\alpha (Lyα\alpha) forest of high-redshift quasars with the first-year dataset of the Dark Energy Spectroscopic Instrument (DESI). Our analysis uses over 420000420\,000 Lyα\alpha forest spectra and their correlation with the spatial distribution of more than 700000700\,000 quasars. An essential facet of this work is the development of a new analysis methodology on a blinded dataset. We conducted rigorous tests using synthetic data to ensure the reliability of our methodology and findings before unblinding. Additionally, we conducted multiple data splits to assess the consistency of the results and scrutinized various analysis approaches to confirm their robustness. For a given value of the sound horizon (rdr_d), we measure the expansion at zeff=2.33z_{\rm eff}=2.33 with 2% precision, H(zeff)=(239.2±4.8)(147.09 Mpc/rd)H(z_{\rm eff}) = (239.2 \pm 4.8) (147.09~{\rm Mpc} /r_d) km/s/Mpc. Similarly, we present a 2.4% measurement of the transverse comoving distance to the same redshift, DM(zeff)=(5.84±0.14)(rd/147.09 Mpc)D_M(z_{\rm eff}) = (5.84 \pm 0.14) (r_d/147.09~{\rm Mpc}) Gpc. Together with other DESI BAO measurements at lower redshifts, these results are used in a companion paper to constrain cosmological parameters
    corecore