38 research outputs found

    Quantitative monitoring of an activated sludge reactor using on-line UV-visible and near infrared spectroscopy

    Get PDF
    The performance of an activated sludge reactor can be significantly enhanced through use of continuous and real-time process-state monitoring, which avoids the need to sample for off-line analysis and to use chemicals. Despite the complexity associated with wastewater treatment systems, spectroscopic methods coupled with chemometric tools have been shown to be powerful tools for bioprocess monitoring and control. Once implemented and optimized, these methods are fast, nondestructive, user friendly, and most importantly, they can be implemented in situ, permitting rapid inference of the process state at any moment. In this work, UV-visible and NIR spectroscopy were used to monitor an activated sludge reactor using in situ immersion probes connected to the respective analyzers by optical fibers. During the monitoring period, disturbances to the biological system were induced to test the ability of each spectroscopic method to detect the changes in the system. Calibration models based on partial least squares (PLS) regression were developed for three key process parameters, namely chemical oxygen demand (COD), nitrate concentration (N-NO3−), and total suspended solids (TSS). For NIR, the best results were achieved for TSS, with a relative error of 14.1% and a correlation coefficient of 0.91. The UV-visible technique gave similar results for the three parameters: an error of ~25% and correlation coefficients of ~0.82 for COD and TSS and 0.87 for N-NO3−. The results obtained demonstrate that both techniques are suitable for consideration as alternative methods for monitoring and controlling wastewater treatment processes, presenting clear advantages when compared with the reference methods for wastewater treatment process qualification.Fundação para a Ciência e Tecnologia (FCT) - PPCDT/AMB/60141/2004, bolsa de doutoramento SFRH/BD/32614/200

    The Antioxidant Role of Xanthurenic Acid in the Aedes aegypti Midgut during Digestion of a Blood Meal

    Get PDF
    In the midgut of the mosquito Aedes aegypti, a vector of dengue and yellow fever, an intense release of heme and iron takes place during the digestion of a blood meal. Here, we demonstrated via chromatography, light absorption and mass spectrometry that xanthurenic acid (XA), a product of the oxidative metabolism of tryptophan, is produced in the digestive apparatus after the ingestion of a blood meal and reaches milimolar levels after 24 h, the period of maximal digestive activity. XA formation does not occur in the White Eye (WE) strain, which lacks kynurenine hydroxylase and accumulates kynurenic acid. The formation of XA can be diminished by feeding the insect with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl] benzenesulfonamide (Ro-61-8048), an inhibitor of XA biosynthesis. Moreover, XA inhibits the phospholipid oxidation induced by heme or iron. A major fraction of this antioxidant activity is due to the capacity of XA to bind both heme and iron, which occurs at a slightly alkaline pH (7.5-8.0), a condition found in the insect midgut. The midgut epithelial cells of the WE mosquito has a marked increase in occurrence of cell death, which is reversed to levels similar to the wild type mosquitoes by feeding the insects with blood supplemented with XA, confirming the protective role of this molecule. Collectively, these results suggest a new role for XA as a heme and iron chelator that provides protection as an antioxidant and may help these animals adapt to a blood feeding habit

    Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development

    Get PDF
    Light microscopy of native preparations, histology, and electron microscopy have revealed that Phlebotomus duboscqi belongs to a class of sand fly species with prompt development of the peritrophic matrix (PM). Secretion of electron-lucent fibrils, presumably chitin, starts immediately after the ingestion of a blood meal and, about 6 h later, is followed by secretion of amorphous electron-dense components, presumably proteins and glycoproteins. The PM matures in less than 12 h and consists of a thin laminar outer layer and a thick amorphous inner layer. No differences have been found in the timing of the disintegration of the PM in females infected with Leishmania major. In both groups of females (infected and uninfected), the disintegration of the PM is initiated at the posterior end. Although parasites are present at high densities in the anterior part of the blood meal bolus, they escape from the PM at the posterior end only. These results suggest that L. major chitinase does not have an important role in parasite escape from the PM. Promastigotes remain in the intraperitrophic space until the PM is broken down by sand-fly-derived chitinases and only then migrate anteriorly. Disintegration of the PM occurs simultaneously with the morphological transformation of parasites from procyclic forms to long nectomonads. A novel role is ascribed to the anterior plug, a component of the PM secreted by the thoracic midgut; this plug functions as a temporary barrier to stop the forward migration of nectomonads to the thoracic midgut

    Blood-Feeding Induces Reversible Functional Changes in Flight Muscle Mitochondria of Aedes aegypti Mosquito

    Get PDF
    Background: Hematophagy poses a challenge to blood-feeding organisms since products of blood digestion can exert cellular deleterious effects. Mitochondria perform multiple roles in cell biology acting as the site of aerobic energytransducing pathways, and also an important source of reactive oxygen species (ROS), modulating redox metabolism. Therefore, regulation of mitochondrial function should be relevant for hematophagous arthropods. Here, we investigated the effects of blood-feeding on flight muscle (FM) mitochondria from the mosquito Aedes aegypti, a vector of dengue and yellow fever. Methodology/Principal Findings: Blood-feeding caused a reversible reduction in mitochondrial oxygen consumption, an event that was parallel to blood digestion. These changes were most intense at 24 h after blood meal (ABM), the peak of blood digestion, when oxygen consumption was inhibited by 68%. Cytochromes c and a+a3 levels and cytochrome c oxidase activity of the electron transport chain were all reduced at 24 h ABM. Ultrastructural and molecular analyses of FM revealed that mitochondria fuse upon blood meal, a condition related to reduced ROS generation. Consistently, BF induced a reversible decrease in mitochondrial H2O2 formation during blood digestion, reaching their lowest values at 24 h ABM where a reduction of 51% was observed. Conclusion: Blood-feeding triggers functional and structural changes in hematophagous insect mitochondria, which may represent an important adaptation to blood feedin

    Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications

    Get PDF
    Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio

    Parameter induction in continuous univariate distributions: Well-established G families

    Full text link

    Validity of bioelectrical impedance analysis to estimation fat-free mass in the army cadets

    No full text
    Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. Methods: A total of 396 males, Brazilian Army cadets, aged 17–24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student’s t-test (for paired sample), linear regression analysis, and Bland–Altman method were used to test the validity of the BIA equations. Results: Predictive BIA equations showed significant differences in FFM compared to DXA (p < 0.05) and large limits of agreement by Bland–Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Conclusion: Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM.83COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP23001.000422/98-302011/23460-

    Validity of Bioelectrical Impedance Analysis to Estimation Fat-Free Mass in the Army Cadets

    No full text
    Background: Bioelectrical Impedance Analysis (BIA) is a fast, practical, non-invasive, and frequently used method for fat-free mass (FFM) estimation. The aims of this study were to validate predictive equations of BIA to FFM estimation in Army cadets and to develop and validate a specific BIA equation for this population. Methods: A total of 396 males, Brazilian Army cadets, aged 17–24 years were included. The study used eight published predictive BIA equations, a specific equation in FFM estimation, and dual-energy X-ray absorptiometry (DXA) as a reference method. Student’s t-test (for paired sample), linear regression analysis, and Bland–Altman method were used to test the validity of the BIA equations. Results: Predictive BIA equations showed significant differences in FFM compared to DXA (p &lt; 0.05) and large limits of agreement by Bland–Altman. Predictive BIA equations explained 68% to 88% of FFM variance. Specific BIA equations showed no significant differences in FFM, compared to DXA values. Conclusion: Published BIA predictive equations showed poor accuracy in this sample. The specific BIA equations, developed in this study, demonstrated validity for this sample, although should be used with caution in samples with a large range of FFM

    Physical training over 6 months is associated with improved changes in phase angle, body composition, and blood glucose in healthy young males

    No full text
    The aim of this study was to evaluate the association between phase angle, body composition, and blood glucose changes in healthy young males after 6 months of physical training. Methods Volunteers, 98 healthy males (18.8 +/- 0.5 years), had 6 months of progressive physical training (5 days a week, 90 minutes a day). Resistance, reactance, and phase angle were obtained by bioelectrical impedance analysis, body composition (fat mass, bone mineral content [BMC], and lean soft tissue [LST]) by dual-energy X-ray absorptiometry, and blood glucose by reflectance photometry. Measurements were made at rest and in a fasted state, both before and after the training period. Results Phase angle, reactance, BMC, and LST significantly increased (0.6 degrees, 3.8 omega, 0.1 kg, and 1.9 kg, respectively; P < .01), whereas resistance and blood glucose decreased (-11.2 omega and -4.1 mg/dL; P < .01). Changes in resistance and reactance explained those changes observed in LST (R-2 = .26 and .16, respectively), but phase angle changes were not related to body composition and blood glucose alterations (P < .05). Conclusions A 6-month period of physical training was associated with positive changes in phase angle, body composition, and blood glucose in healthy young males, reinforcing the importance of maintaining a physically active lifestyle.315CAPES - Coordenação de Aperfeiçoamento de Pessoal e Nível Superior23001.000422/98-3
    corecore