19,899 research outputs found

    The observation of earthquakes: A guide for the general observer

    Get PDF
    This article is designed to put before the public in systematic, readable form such information about earthquakes as will enable ordinary observers to co-operate effectively with specially trained investigators in carrying through extensive earthquake surveys and inquiries. It is hoped that it will stimulate the widespread making of records of the behavior of earthquakes, especially throughout California and the neighboring region. It may be regarded simply as a brief manual for volunteer observers

    The observation of earthquakes: A guide for the general observer

    Get PDF
    This article is designed to put before the public in systematic, readable form such information about earthquakes as will enable ordinary observers to co-operate effectively with specially trained investigators in carrying through extensive earthquake surveys and inquiries. It is hoped that it will stimulate the widespread making of records of the behavior of earthquakes, especially throughout California and the neighboring region. It may be regarded simply as a brief manual for volunteer observers

    Measurement of the analyzing power of proton-carbon elastic scattering in the CNI region at RHIC

    Full text link
    The single transverse spin asymmetry, A_N, of the p-carbon elastic scattering process in the Coulomb Nuclear Interference (CNI) region was measured using an ultra thin carbon target and polarized proton beam in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). In 2004, data were collected to calibrate the p-carbon process at two RHIC energies (24 GeV, 100 GeV). A_N was obtained as a function of momentum transfer -t. The results were fit with theoretical models which allow us to assess the contribution from a hadronic spin flip amplitude.Comment: Contribution to the proceedings of the 16th International Spin Physics Symposium, spin2004 (Trieste

    On a Feasible–Infeasible Two-Population (FI-2Pop) Genetic Algorithm for Constrained Optimization: Distance Tracing and no Free Lunch

    Get PDF
    We explore data-driven methods for gaining insight into the dynamics of a two-population genetic algorithm (GA), which has been effective in tests on constrained optimization problems. We track and compare one population of feasible solutions and another population of infeasible solutions. Feasible solutions are selected and bred to improve their objective function values. Infeasible solutions are selected and bred to reduce their constraint violations. Interbreeding between populations is completely indirect, that is, only through their offspring that happen to migrate to the other population. We introduce an empirical measure of distance, and apply it between individuals and between population centroids to monitor the progress of evolution. We find that the centroids of the two populations approach each other and stabilize. This is a valuable characterization of convergence. We find the infeasible population influences, and sometimes dominates, the genetic material of the optimum solution. Since the infeasible population is not evaluated by the objective function, it is free to explore boundary regions, where the optimum is likely to be found. Roughly speaking, the No Free Lunch theorems for optimization show that all blackbox algorithms (such as Genetic Algorithms) have the same average performance over the set of all problems. As such, our algorithm would, on average, be no better than random search or any other blackbox search method. However, we provide two general theorems that give conditions that render null the No Free Lunch results for the constrained optimization problem class we study. The approach taken here thereby escapes the No Free Lunch implications, per se

    A polynomial bound for untangling geometric planar graphs

    Get PDF
    To untangle a geometric graph means to move some of the vertices so that the resulting geometric graph has no crossings. Pach and Tardos [Discrete Comput. Geom., 2002] asked if every n-vertex geometric planar graph can be untangled while keeping at least n^\epsilon vertices fixed. We answer this question in the affirmative with \epsilon=1/4. The previous best known bound was \Omega((\log n / \log\log n)^{1/2}). We also consider untangling geometric trees. It is known that every n-vertex geometric tree can be untangled while keeping at least (n/3)^{1/2} vertices fixed, while the best upper bound was O(n\log n)^{2/3}. We answer a question of Spillner and Wolff [arXiv:0709.0170 2007] by closing this gap for untangling trees. In particular, we show that for infinitely many values of n, there is an n-vertex geometric tree that cannot be untangled while keeping more than 3(n^{1/2}-1) vertices fixed. Moreover, we improve the lower bound to (n/2)^{1/2}.Comment: 14 pages, 7 figure

    Tactile Sensory Supplementation of Gravitational References to Optimize Sensorimotor Recovery

    Get PDF
    Integration of multi-sensory inputs to detect tilts relative to gravity is critical for sensorimotor control of upright orientation. Displaying body orientation using electrotactile feedback to the tongue has been developed by Bach-y- Rita and colleagues as a sensory aid to maintain upright stance with impaired vestibular feedback. This investigation has explored the effects of Tongue Elecrotactile Feedback (TEF) for control of posture and movement as a sensorimotor countermeasure, specifically addressing the optimal location of movement sensors

    A theory for the impact of a wave breaking onto a permeable barrier with jet generation

    Get PDF
    We model a water wave impact onto a porous breakwater. The breakwater surface is modelled as a thin barrier composed of solid matter pierced by channels through which water can flow freely. The water in the wave is modelled as a finite-length volume of inviscid, incompressible fluid in quasi-one-dimensional flow during its impact and flow through a typical hole in the barrier. The fluid volume moves at normal incidence to the barrier. After the initial impact the wave water starts to slow down as it passes through holes in the barrier. Each hole is the source of a free jet along whose length the fluid velocity and width vary in such a way as to conserve volume and momentum at zero pressure. We find there are two types of flow, depending on the porosity, ß , of the barrier. If ß : 0 = ß < 0.5774 then the barrier is a strong impediment to the flow, in that the fluid velocity tends to zero as time tends to infinity. But if ß : 0.5774 = ß = 1 then the barrier only temporarily holds up the flow, and the decelerating wave water passes through in a finite time. We report results for the velocity and impact pressure due to the incident wave water, and for the evolving shape of the jet, with examples from both types of impact. We account for the impulse on the barrier and the conserved kinetic energy of the flow. Consideration of small ß gives insight into the sudden changes in flow and the high pressures that occur when a wave impacts a nearly impermeable seawall
    corecore