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Abstract. We model a water wave impact onto a porous breakwater. The breakwater surface is modelled
as a thin barrier composed of solid matter pierced by channels through which water can flow freely. The
water in the wave is modelled as a finite-length volume of inviscid, incompressible fluid in quasi-one-
dimensional flow during its impact and flow through a typical hole in the barrier. The fluid volume moves
at normal incidence to the barrier. After the initial impact the wave water starts to slow down as it passes
through holes in the barrier. Each hole is the source of a free jet along whose length the fluid velocity
and width vary in such a way as to conserve volume and momentum at zero pressure. We find there are
two types of flow, depending on the porosity, β, of the barrier. If β : 0 ≤ β < 0.5774 then the barrier is
a strong impediment to the flow, in that the fluid velocity tends to zero as time tends to infinity. But if
β : 0.5774 ≤ β ≤ 1 then the barrier only temporarily holds up the flow, and the decelerating wave water
passes through in a finite time. We report results for the velocity and impact pressure due to the incident
wave water, and for the evolving shape of the jet, with examples from both types of impact. We account
for the impulse on the barrier and the conserved kinetic energy of the flow. Consideration of small β gives
insight into the sudden changes in flow and the high pressures that occur when a wave impacts a nearly
impermeable seawall.
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1. Introduction

Sudden, large and rapidly changing forces are exerted by steep sea waves when they break
against coastal structures. For a rubble mound breakwater the seaward boundary is a
surface composed of impermeable rock interspersed with holes that allow ready penetration
of the structure by wave water. The holes are entries to passageways and voids between
the blocks, boulders or concrete elements that make up the structure. Even a monolithic
vertical breakwater may contain cracks or spaces between the masonry blocks that allow
high-speed water entry from breaking-wave impact. A wave that overturns and breaks onto
a steep shingle beach (common in the British Isles) encounters a very open surface, able to
admit a large fraction of the wave water before its seaward backwash occurs. In order to
understand these forces we need first to model the time-dependent pressure distribution
associated with the flow arriving on the seaward boundary of the structure. It is only by
modelling the time-dependent flow, as the wave penetrates the outermost layer of rock,
that we can hope to understand the impact pressures, and learn something of the starting
conditions for the subsequent flow deeper into the structure. This paper is mostly about
the flow in the wave and its transformation into free jets that shoot inside the labyrinth
of a rubble mound breakwater or shingle. The free jets go on to cross the void spaces and
collide with the faces of the interior rock. However, these internal collisions are local events
that do not have upstream influence on the flow conditions that we model in the region
close to the structure’s surface.

Bagnold [1] was one of the first to treat water wave impact mechanics in terms of the
sudden changes that occur in the momentum of the fluid during impact against a wall.
Other pioneering work on the analysis of steady jets was carried out by Taylor [15] who
modelled the flow in a shaped charge. Further details are found in Birkhoff et al. [2] and
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the first four chapters of Birkhoff and Zarantonello [3]. In these studies and the present
paper, the Reynolds number and the Froude number are both so high that viscosity and
gravity are negligible.

If a liquid region with a free surface falls onto a rigid impermeable plane, then, soon after
contact, liquid jets spread laterally over the plane. These fast jets are difficult to analyse
or resolve adequately in computations. The fluid domain near the site of impact is greatly
extended by the jet flow, and there are accelerations of thousands of g to be accounted
for in the early stages after impact. Segments of the free surface, which are initially short,
quickly become elongated by the flow. In a computation the free surface (and its velocity
field) may become unacceptably poorly resolved in space and time. Korobkin and Yilmaz
[12], model a similar situation for a dam-break flow, where a horizontal jet emerges near
the bed. Splash jets also occur in the water entry of a solid body. These have been analysed
for a blunt body by Howison et al. [9]. Part of their analysis uses the theory of Wagner
[17] for describing the position and nature of the overturning free surface near the jet root,
theory which is explained further in chapter 9 of Faltinsen [8]. The splash jets made by
droplet impact onto a liquid layer are treated by Howison et al. [10].

An ascending splash jet can be made by a vertical wavemaker in a water wave tank.
King and Needham [11] showed, using small-time asymptotics, that a vertical section of
wall, moving horizontally from rest with uniform acceleration into water, also initially at
rest, induces an ascending splash-jet whose width and relatively tall vertical displacement
both grow from zero. King and Needham [11] solved the problem for an initial fluid domain
which is a quarter-plane. Needham et al. [13] have treated the jet generated in finite depth
by an inclined accelerating plate, including the influences of gravity and surface tension.

Cooker [6] and [7] has modelled the pressures at the early stages of jet growth, in
two-dimensional and axisymmetrically converging flows. That earlier work concentrates
on the period of time of highest pressure and limited free-surface displacement for the
fluid nearest the plane wall being struck. By contrast, the current work focusses on the
flow through a sharply defined channel, describing the surface layer of a permeable wave
barrier. Violent flows adjacent to and inside a permeable barrier were discussed by Wood
and Peregrine [18]. Here, we propose a treatment that is quasi-one-dimensional on an axis
perpendicular to the seawall and describes the detailed development in time of the incident
flow and jet generation.

The formulations of the governing equations and boundary conditions are developed
in §2. The solutions for the flow in the volume of fluid in the wave are worked out in §3.
The solutions for the flow in the jet are presented in parametric form in §4. In §5 we
describe an example of the kind of calculation that may be made from the theory, relevant
to seawave impact. In §6 we report on the energy change in the flow, and we discuss the
findings to motivate future work.

2. Analysis

The general arrangement is drawn in Fig. 1. The water in the breaking wave is on the
left and the flow is to the right, parallel to the x-axis. The permeable barrier is shown
as shaded triangles. The array of jets emerges to the right of the barrier. We treat the
wave-water flow and the jet flow separately in the following subsections. The Appendix
explains how it is that we may treat the thin barrier between −W ≤ x ≤ 0 as a surface of
spatial discontinuity, at x = 0, for the pressure and velocity.
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2.1. Flow in the incident wave

The fluid is inviscid and incompressible with constant density %. The velocity field is
irrotational and may be described by a velocity potential φ(x, y, z, t), where x, y, z are
cartesian coordinates in the inertial frame of reference of the plane barrier, and t is time.
The positive x-axis points into the barrier orthogonally, and the thin barrier is at x = 0.
The wave water first meets the barrier with given speed u10 at time t = 0. Initially the
fluid occupies the region x : −L0 ≤ x ≤ 0 where the initial length of the wave water is L0.
The velocity field is assumed to be essentially one dimensional and, owing to the fluid’s
incompressibility, its velocity is spatially uniform: u1(t)i, where the subscript 1 refers to the
region −L0 ≤ x ≤ 0. In the subsequent motion we suppose that the rear face x = −L(t)
of the wave water is a free surface on which the pressure is zero (atmospheric reference).
So we have the following kinematic condition at x = −L:

−dL

dt
= u1(t). (1)

The pressure p1(x, t) and the velocity are governed by the x-component of Euler’s equation:

du1

dt
= −1

%

∂p1

∂x
. (2)

Integrating (2) in space we have an expression for the pressure, which satisfies the dynamic
condition p1 = 0 at the rear of the wave water:

p1(x, t) = −% (x + L(t))
du1

dt
. (3)

2.2. Flow in the hole and into the jet

As the fluid meets the barrier it passes through holes and forms free jets, shown on the right
in Fig. 1. We treat the holes as having a cross-sectional area that decreases in the direction
of fluid flow. In practical terms the wave water that passes through a hole between elements
in a breakwater will continue until it detaches from the interior walls of the hole, so that a
free surface is formed downstream. The point of free-surface separation may coincide with
the cross-section of the hole which has the smallest area. A pressure gradient is found
between the high-pressure at the entrance to each hole and the zero-pressure condition in
the jet that emerges at the hole’s exit. The pressure gradient accelerates the fluid from
the front face of the barrier through the constriction towards the narrower exit. In the
Appendix we model this local flow in more detail in order to show that we may simplify
its influence to discontinuities in pressure and flow speed across a thin barrier, between
x = 0− and x = 0+.

We consider part of the barrier’s face, at x = 0−, this forms one facet of a control
volume for a region of fluid in x < 0 that is able to flow through one typical hole. We
assume that this control volume is a prism whose cross-sections share the same area A1.
Now at x = 0+ the hole has an exit of cross-sectional area A20 ≤ A1. The subscript 2
refers to the region x ≥ 0 and the subscript 0 refers to x = 0+. The porosity β defined
by β = A20/A1 is a material constant for the barrier which has a homogeneous array of
holes. Naturally between the extremes of impermeable and wholly open, the barrier has a
porosity in the interval 0 ≤ β ≤ 1.

In the short time scale of impact we expect the fluid to pass through the hole so that
volume continuity can be appealed to: the equal volume fluxes entering and leaving the
hole are related by

u1(t)A1 = u20(t)A20, (4)

jemimpact3.tex; 12/06/2012; 15:32; p.3



4

where u20(t) is the exit velocity at x = 0+ of the downstream velocity field, u2, in the jet.
Downstream of the hole u2 depends on time and space. In the jet we assume that capillarity
is negligible, so that we can assume that the pressure is zero throughout the jet fluid. We
could include the influence of gravity at this stage, but for this high-Froude -number flow
the effect is only to bend the slender jet into an arc, whose radius of curvature is large
compared with the diameter of the exit hole, and this has negligible upstream influence.
See Vanden-Broeck and Keller [16] and Parau et al. [14].

Neglecting gravity, air resistance or any external force, each fluid element moves with
a constant speed equal to that with which it leaves the exit hole:

u2(t, τ) = u20(τ), (5)

where t is the current time and τ is the earlier time at which the fluid element left the
exit hole: 0 ≤ τ ≤ t. At any current time, t, the jet is parameterised by τ , from τ = 0 at
the jet head, to τ = t for an element which is now leaving the exit at x = 0+. Therefore
the position of a material element of the jet is x = X, where

X(t, τ) = (t− τ)u20(τ). (6)

Each material element of the jet has a varying cross-sectional area A2, which changes so as
to conserve the fluid volume between any two neighbouring material cross-sections in the
jet. Suppose τ and τ +δτ are parameter values that correspond to x = X and x = X +δX,
respectively, where δτ and δX have opposite sign. Then, at fixed time t, the volume of a
material element of the jet can be written in three ways:∫ τ+δτ

τ
A20u20(τ) dτ = −

∫ X+δX

X
A2(t, τ) dX = −

∫ τ+δτ

τ
A2(t, τ)

dX

dτ
dτ, (7)

where dX/dτ is obtained from (6). Consequently the first and third integrals of (7) give
us the time-dependent distribution of the jet’s cross-sectional area:

A2(t, τ) =
A20

1− (t− τ)u̇20(τ)/u20(τ)
. (8)

On the right-hand side of (8), we will find that u̇20/u20 < 0, so that A2 is non-singular for
all t > 0 and τ : 0 ≤ τ ≤ t.

For the jet, the above analysis with eqs (4–8) is equivalent to using the method of
characteristics on the Eulerian partial differential equations of flow:

u2t + u2u2x = 0 and A2t + Au2x = 0.

The characteristic curves in the x, t plane are straight lines. On each characteristic u2 =
constant and A2 decreases with increasing t. The slope of each characteristic is dictated
by the speed u20(τ) of the particle when it exited the hole at x = 0 at the earlier time τ .
Importantly the characteristics do not intersect, because u20(τ) decreases monotonically
as τ increases. This view of the jet flow, from the theory of characteristics, shows us that
our solution, in eqs (5, 6, 8), is valid throughout x ≥ 0 and t ≥ 0.

2.3. The coupling of the wave-water and jet flows

We now consider Bernoulli’s equation in the wave water, and in the jet where the pressure
p2 is zero:

p1

%
+

∂φ1

∂t
+ 1

2u2
1 = f(t) =

∂φ2

∂t
+ 1

2u2
2, (9)
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where f(t) is a function shared by the regions 1 and 2 (because they share portions of the
same streamlines) and φ1 and φ2 are the corresponding velocity potentials. In fact, for a
thin barrier, we can write φ1 = 0 = φ2 at x = 0. We already know that φ1 = xu1(t) and
so φ1t = 0 at x = 0−. Similarly φ2t = 0 at x = 0+. Hence at x = 0 (9) implies

%−1p1(0, t) + 1
2u1(t)

2 = f(t) = 1
2u20(t)

2. (10)

This completes the field equations. The initial conditions are −L̇ = u1 = u10, L = L0

where L0 and u10 are given positive constants, and the jet in region 2 starts from zero
length. Our next task is to find u1(t), from which all the other flow variables follow. Before
doing that in §3 we non-dimensionalise the variables and show that there is one parameter
to describe the set of solutions.

2.4. Differential Equations of the Model and Non-dimensionalisation

Our starred dimensionless variables are defined as follows: time t∗ = t u10/L0, coor-
dinate x∗ = x/L0, length L∗(t∗) = L(t)/L0, velocity u∗1(t

∗) = u1/u10, and pressure
p∗1 = p1/(%u2

10). With respect to these we will solve the following coupled differential
equations. Equation (3) becomes

p∗1(x
∗, t∗) = −(x∗ + L∗)

du∗1
dt∗

, (11)

At x∗ = 0 Bernoulli’s Eq. (10) gives

p∗1(0, t∗) + 1
2u∗1(t

∗)2 = f(t∗) = 1
2u∗20(t

∗)2, (12)

the kinematic condition (1) at the rear of the wave water is

u∗1(t
∗) = −dL∗

dt∗
, (13)

and the volume-continuity condition for the whole fluid implies that

u∗20(t
∗) = β−1u∗1(t

∗), (14)

where β = A20/A1. The free surface shape is then

A∗
2(t

∗, τ∗) =
β

1− (t∗ − τ∗)u̇∗20(τ∗)/u∗20(τ∗)
. (15)

Initially u∗1 = L∗ = −L̇∗ = 1. Equations (11) and (15) contain just one parameter, β. In
the next section we solve the initial-value problem.

3. Solutions in region 1: the wave-water flow

At x = 0 equations (11–14) give a differential equation for L∗(t∗):

L∗d2L∗

dt∗2 = α

(
dL∗

dt∗

)2

, (16)

where the constant α ≥ 0 is defined by

α = 1
2(β−2 − 1). (17)
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By using the identity L̈∗ = L̇∗dL̇∗/dL∗ we reduce (16) from a second- to a first-order
ordinary differential equation, and separate the variables. From this we obtain

dL∗

dt∗
= −L∗α.

Another separation of variables gives L∗ as a function of t∗. The results depend on one
parameter, α, and the distinct expressions for the class α 6= 1 and the special case α = 1
are as follows.

If α 6= 1 then
L∗(t∗) = (1 + [α− 1]t∗)1/(1−α), (18)

and from (13) the fluid velocity of the wave water is

u∗1(t
∗) = (1 + [α− 1]t∗)α/(1−α) if, (19)

and from (11) the pressure distribution in −L∗ ≤ x∗ ≤ 0 is

p∗1(x
∗, t∗) = α(x∗ + L∗(t∗))(1 + [α− 1]t∗)(2α−1)/(1−α). (20)

If α = 1 then
L∗(t∗) = exp(−t∗), (21)

u∗1(t
∗) = exp(−t∗), (22)

p∗1(x
∗, t∗) = (x∗ + L∗(t∗)) exp(−t∗). (23)

The above dimensionless expressions are used to plot the results shown in Figs. 2–6.
In dimensional un-starred variables, the results correspond to the following expressions,

which contain the initial speed u10 and length L0 of the wave water.
If α 6= 1 then

L(t) = L0

(
1 + [α− 1]

u10

L0
t

)1/(1−α)

, (24)

u1(t) = u10

(
1 + [α− 1]

u10

L0
t

)α/(1−α)

, (25)

p1(x, t) = %u2
10

α

L0
(x + L(t))

(
1 + [α− 1]

u10

L0
t

)(2α−1)/(1−α)

. (26)

If α = 1 then
L(t) = L0 exp(−u10t/L0), (27)

u1(t) = u10 exp(−u10t/L0), (28)

p1(x, t) = %u2
10L

−1
0 (x + L(t)) exp

(
−L−1

0 u10t
)

, (29)

where α depends on the porosity β according to (17).

Figure 2 shows the wave water’s velocity u∗1, as a function of time after impact, for
several values of β. The plot reveals two types of flow. First, for α ≥ 1 (or equivalently
0 ≤ β ≤ 3−1/2), the flow continues to slow down forever, because the low-porosity barrier
retards the flow significantly. The second type of flow is for 0 ≤ α < 1 (i.e. 3−1/2 < β ≤ 1),
and the fluid flows relatively easily through the high-porosity barrier, and it does so in
a finite time, T . For brevity in the following we define the critical value of β, that is the
border between the two types of flow, as

βc = 3−1/2 = 0.5774
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to four significant digits.
From (24) we have L = 0 when t = T , where

T =
2L0β

2

(3β2 − 1)u10
if βc < β ≤ 1. (30)

At time t = T the last of the wave water reaches the hole and, simultaneously, the fluid
velocity falls to zero. Hence at later times there is always fluid, at rest, in the hole: the
rear of the jet is always connected to the hole as the jet stretches away. We discuss the
flow and the shape of the jet in the next section. The spatial distribution of pressure has
its highest value at x = 0−. Equations (26, 29) imply that if β 6= βc then

p1(0, t) = 1
2%u2

10

(
1
β2
− 1

) (
1 +

[
1
β2
− 3

]
u10

2L0
t

)C

, (31)

where the power C = 2(1− β2)/(3β2 − 1), and if β = βc then

p1(0, t) = %u2
10 exp(−2u10t/L0). (32)

Figure 3 shows the dimensionless pressure at the barrier, according to (31, 32), as a
function of time for several values of β. At t = 0+ the global maximum in pressure is

p1(0−, 0+) = 1
2%u2

10

(
1
β2
− 1

)
, (33)

which shows that the global maximum in pressure is sensitivity to changes in β if β is
small. The pressure is initially high for small values of β corresponding to a barrier that
is nearly impermeable. In Fig. 3, the curve drawn for the smallest value, β = 0.1, has the
highest initial pressure in the plot. In all cases the pressure decreases towards zero quickly
after the initial maximum. In the Appendix the derivation of eq. (A3) makes clear that,
for a short time before t = 0 in Fig. 3, the pressure rises very quickly from zero to precisely
the pressure specified by (33) due to a brief violent flow that fills the hole.

Despite the rapid fluid deceleration that occurs for β = 0.9, near to t = 1.13 in Fig.
2, there is no corresponding spike in pressure in Fig. 3, because at that late time there is
little mass (and hence little momentum) in the wave water. In Fig. 3, all the pressures fall
to zero, or decline gradually towards zero, as t increases.

Following on from the ideas of Cooker and Peregrine [5], the pressure impulse on the
outer face of the barrier is defined to be the time integral of the pressure during the impact.
Ignoring the small impulse due to the brief rise in pressure discussed in Appendix A, the
pressure impulse on the barrier is defined to be

I =
∫ T ′

0
p1(0−, t) dt, (34)

where T ′ =∞ if 0 ≤ β < βc or T ′ = T , equation (30), if βc ≤ β ≤ 1.
In terms of β we find that

I(β) =
1− β2

1 + β2
%u10L0. (35)

Expressions (34, 35) show that, although the maximum pressure (33) is singular in
the limit β → 0, the mechanically significant quantity of the pressure impulse remains
bounded by the incident momentum %u10L0A1 in this limit. Cooker and Peregrine [5]
show that the pressure impulse is directly proportional to the change in fluid momentum.
This is for the same reason that, in the elementary mechanics of a particle colliding with a
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wall, the impulsive reaction of the wall can be equated with the particle’s sudden change
of momentum. For such an impact the impulse is the product of an indefinitely large force
multiplied by an indefinitely small time of contact. Similarly the pressure impulse in a
fluid is the product of an indefinitely large pressure multiplied by an indefinitely small
time period of impact.

Returning to our discussion of the limit of small β, if the barrier is impermeable (β = 0)
then (35) implies that all of the incident momentum, %u10L0 per unit area of barrier, is
destroyed by the impulsive reaction from the barrier. For an impermeable wall there is a
tacit physical assumption that just after impact the fluid comes to rest (in the horizontal
direction) and remains in contact with the barrier. However, the wave water could instan-
taneously bounce back from the barrier, with a coefficient of restitution e : 0 < e ≤ 1.
Such an impact would coincide with an even greater impulse on the barrier, (1+e)%u10L0,
which is up to twice that indicated by (35) with β = 0. See Wood and Peregrine [18] who
modelled the bounce-back impact of a wave impacting on an impermeable wall.

At the other extreme, if the barrier is completely permeable (β = 1) then the fluid mo-
mentum is unchanged by the encounter, and (35) implies there is zero impulsive response
from the barrier.

4. Solutions in region 2: the shape and flow of the jet

Equations (4–8) are the solution for the jet, written parametrically in terms of u20(τ),
which in turn only depends on u1(τ), given explicitly by (25, 28). Equation (15) implies
that

A∗
2(t

∗, τ∗) =
β(1 + [α− 1]τ∗)

1 + αt∗ − τ∗
. (36)

Figure 4 shows results for the cross-sectional area of the jet for β = 0.8, a value high
enough that the fluid flows through the barrier in a finite time T ∗ = 1.391. Thereafter
the material fluid element at the exit, x = 0+, has zero speed and the jet’s cross-sectional
area there falls to zero for t∗ > T ∗. Each material element of the jet moves at its own
constant distinctive speed; the jet lengthens and thins everywhere. The jet head also thins
over time, but, for this sufficiently large value of β, it is the head that remains the thickest
cross-section of the jet.

Figure 5 shows a jet from the other class of flow, when β is small. This example is for
β = 5−1/2 = 0.4472 (α = 2), a value of β less than the critical value βc = 0.5774. Here the
decelerating fluid in the wave takes forever to flow through the barrier. As before, each
element of the jet moves with its own distinctive speed, and the jet lengthens and thins
everywhere. The jet head remains the thinnest section of the jet. From (15) we see that, as
t∗ tends to infinity, the thickness for every cross-section decreases as t∗−1. For a jet that
is in the form of a sheet, eqs (4) and (36) ensure that the thickness of the jet decreases to
zero algebraically, with increasing x∗, as t∗ tends to infinity. Similarly, for a jet which is
axisymmetric with circular cross-sections, eqs (4) and (36) ensure that the radius of each
material cross-section decreases as t∗−1/2 as t∗ tends to infinity.

The Lagrangian description of the jet fluid velocity, u2(t, τ) = u20(τ), can be re-
expressed in an Eulerian framework as discussed at the end of section 2.2. Qualitatively
the continual deceleration of the wave water ensures that u20(τ) is a monotone decreasing
function. Hence the field of velocity in the jet ensures that the fluid domain is everywhere
continually being lengthened by faster fluid moving ahead of slower fluid. Figure 6 shows
the spatial distribution of velocity at time t∗ = 1.0, which corresponds to the last profile
drawn in Fig. 5. The distribution is close to linear. The cross-sectional area of each fluid

jemimpact3.tex; 12/06/2012; 15:32; p.8



9

element of the jet continually decreases in time as compensation for the longitudinal
spreading of the liquid, which in turn is due to the spatial gradient in the fluid velocity.

Finally we show that after the fluid has penetrated the barrier there is no energy loss.
The fluid energy is all kinetic: before impact the kinetic energy is KE1 = 1

2%u2
10L0A1.

On the other side of the barrier we can obtain the downstream kinetic energy KE2 by
integrating (over a sufficiently long period of time) the kinetic energy flux 1/2%u3

20A20 at
the exit of the hole. Here u20(t) is given by (25, 28). The calculation implies that the
downstream kinetic energy is KE2 = 1

2%u2
10L0A1. Hence KE2 = KE1 for 0 < β ≤ 1. So

while penetrating the barrier there is no kinetic energy loss. This is as we would expect
on physical grounds, as the flow is frictionless and the fixed barrier can do no work on the
fluid.

5. Example calculation

We now put in context the magnitude and duration of the pressure predicted by (32).
Suppose water from a breaking wave presents a thickness L0 = 1m, moving with a speed
of the order of

√
gL0, hence we can take u10 = 3m/s. Let the impact be onto a wall of

porosity β = 0.1, and surface layer width W = 0.1 m. Then over the short time of 0.018
seconds the pressure at the barrier rises to a global maximum that is nearly 150,000 N/m2.
This is a peak pressure that is 1.5 times atmospheric pressure. It is within the range of
impact pressures computed, measured and reviewed by Bredmose et al. [4]. Using L0 as
our suitable length scale, the results of Bredmose et al. suggest that peak pressures lie
between ten and twenty %gL0.

From Fig. 3 we see that the time scale for the impact pressure to decay to 1 N/m2 is
just 0.12 L0/u10 = 0.04 seconds. From Fig. 2, we find that with β = 0.1 the incident flow
speed, u1, decelerates over this time from 3m/s to 0.3m/s, and the head of the jet exits the
hole with initial speed 30m/s. By the time t = 0.04 seconds, the jet is 1.5m long, and is
therefore already longer than the incident wave water. If the jet is unimpeded in its flight,
the jet head stays the thinnest section and continues to travel at 30 m/s. Meanwhile at
the hole, the jet water is now moving at only 0.09 m/s.

According to eq (35) the impulse, I, on the barrier is 98% of the theoretical maximum
value of %u10L0 = 3000Ns/m2, which would be experienced by an impermeable wall. To
put this in context, such a pressure impulse is similar in size to that delivered by a wrecking
ball, whose momentum per unit area of collision is mv/A. Suppose a steel ball of mass
m = 1000 kg impacts masonry over one hemisphere of contact area A = 0.8m2, and suppose
the incident speed is a moderate v = 2.4 m/s. Then the average pressure impulse over the
hemisphere of contact between the steel ball and the masonry is mv/A = 3000Ns/m2, the
same as that from our example wave.

6. Discussion, conclusions and further work

The model presented is simple enough to capture the essential fluid dynamics in one spatial
dimension. The impact pressure quickly rises to a peak and then falls. The peak impact
pressure is 1

2%u2
10(β

−2 − 1). For small β the pressure decreases quickly, and the pressure
impulse is finite, even when β = 0 and the pressure is unbounded: see Fig. 3 and (35).

The results fall into two classes, depending on the porosity β. If the barrier has a
small enough porosity (β < βc) then the wave water takes forever to slow down to rest.
Alternatively, if the barrier has a high enough porosity (β ≥ βc), then all of the wave water
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reaches the exit hole in a finite time, T that decreases to L0/u10 as β increases to unity.
At t = T the last fluid element in the wave water reaches the hole and is simultaneously
brought to rest at the exit. An experimental investigation would reveal whether barriers of
differing permeability produce qualitatively different flows either side of a critical porosity
βc. Photographic evidence might confirm the theory’s prediction that the jet is thin-headed
for low permeabilities β < βc and fat-headed for high-porosity barriers, β ≥ βc. As time
increases the jet thins everywhere, due to the velocity gradient in the jet.

While the fluid penetrates the barrier there is no energy loss.
We have assumed that the jet velocity when exiting the hole is primarily in the direction

i, which points at right angles into the breakwater. This is reasonable when the hole has
some line or axis of symmetry parallel to the x-axis. Otherwise the hole would be able to
exert a non-zero force orthogonal to the direction i. Such a force would deflect the stream
into some fixed direction indicated by a unit-vector d, different from direction i. Such a
jet flow could be accommodated by interpreting our results for the longitudinal velocity
u2 and the cross-sectional area A2 with respect to the jet axis of d.

The analysis rests on the assumption that fluid regions 1 and 2 are connected through
the hole. Are there circumstances under which the fluid could ‘bounce’ from the barrier
on initial impact? Could the flow spontaneously sever the connection through the hole,
during the fluid deceleration on the seaward side? A bubble or a rough-edged hole might
induce ventilation that could promote a separation of the two fluid regions.

Further work is needed on the three-dimensional flow: the incident wave water may not
flow normal to the wall, or the impacting wave water may not have constant thickness
L0, and it could strike with a spatially non-uniform normal velocity component u10. That
said, a wave approaching at normal incidence is the most interesting to treat as it coincides
with the highest impact pressures, although a component of fluid velocity parallel to the
barrier could be included. If our model parameters are functions L0(y, z), β(y, z), u10(y, z)
or β(y, z) that vary sufficiently slowly with respect to the (y, z) coordinates, then we could
accommodate jets whose properties have correspondingly slow variations in y and z. In
other words any one jet depends only on the local conditions of impact seaward of its hole.
For an inhomogeneous array of holes, it would be worth further investigation to identify
the control volume of fluid in the wave that supplies fluid to each hole.

Appendix A

Our aim is to model the quick rise in pressure while the front of the wave penetrates the
barrier, and to show that this pressure rise-time is so short that we can dismiss the hole
penetration phase of the flow from the dynamics of the system modelled in the current
paper.

In Fig. 1 the wave water first makes contact with the barrier at the left-hand vertices of
the triangles, which in pairs form the entrance to each hole. We suppose that the forward
face of the wave is a free surface, at x = F (t), at which the pressure p is zero. The free
surface advances through the narrowing hole. We suppose that the velocity of the rear of
the wave water is maintained at its initial value u10 throughout the short time that the
forward free surface takes to traverse the hole from x = −W to x = 0. The constant W is
the length of the hole, and W � L0. (If we were to allow u1 to decrease from u10 during
the flow described here, then this would only reduce the pressure from that found below.)

Suppose, without loss of generality, that the cross-sectional area of the hole varies
linearly with x between A1 at x = −W and A20 at x = 0. Hence the cross-sectional area
is

A(x) = A1 −
x + W

W
(A1 −A20)
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(If the hole is also axisymmetric then the hole is a truncated section of a parabola of
revolution.) We know that the fluid volume flux at the entrance to the hole, at x = −W ,
is the product of the speed u10 and the cross-sectional area A1. This volume flux equals
that at the free surface x = F , where the fluid speed is dF/dt and the cross-sectional area
is A1 −W−1(F + W )(A1 −A20)). Equating these volume fluxes gives us

dF

dt
=

u10

β − F (t)W−1(1− β)
, (A1)

where β = A20/A1. Since the volume flux through every cross-section of the hole is the
same, we can write down the Eulerian fluid velocity, u, in the hole:

u(x) =
u10

β − xW−1(1− β)
−W ≤ x ≤ F (t). (A2)

Note that in (A2) u(x) does not depend on t during the time that the forward free surface
is advancing within the hole. Expression (A2) is in accord with the kinematic condition
dF/dt = u(F ) at x = F (t).

The pressure distribution p(x, t) in the hole comes from Bernoulli’s equation: for
x : −W ≤ x ≤ F (t) we have

p(x, t) = 1
2%u(F )2 − 1

2%u(x)2. (A3)

According to (A3) the pressure rises in time at every point as F increases from −W to
0. The RHS of (A3) is the difference between two squares. So the highest pressure occurs
when the first term is largest (when F = 0), and simultaneously where the second term in
(A2) is smallest (at x = −W ). This maximum pressure we name pmax = 1

2%u2
10(β

−2 − 1),
and it coincides with the pressure at t = 0+ (equation 33) in Fig. 3.

The time ts for the pressure to rise from zero to this maximum can be obtained from
separating the variables and integrating (A1) from F = −W to F = 0 and from t = 0 to
t = ts. We find that

ts = 1
2(1 + β)

W

u10
, (A4)

which also equals the volume of the hole divided by the constant fluid volume flux through
it. The coefficient one-half at the front of expression (A4) only depends on how the cross-
sectional area of the hole changes with distance. Here it is linear, so that the hole is a
volume of revolution of an arc of a paraboloid. For a right-circular conical hole the first
coefficient of (A4) is instead one-third.

Since W � L0, (A4) implies that the initial transients in the flow, created while the
wave is first encountering the barrier, occur over a time scale ts that is much shorter than
the time scale L0/u10 on which events occur in §2 of the current paper. For each curve
in Fig. 3 we can suppose that the initial highest pressure is reached very quickly over a
small time interval before t = 0 in the plot. Therefore we can neglect the details of the
flow inside the hole and reduce its width to a transition between x = 0− and x = 0+ in §2.
We can also ignore the contribution to the impulse due to this phase of the flow while the
pressure is increasing, because it is a small fraction W/L0 times the initial momentum
%u10L0 discussed in and after (35).

Acknowledgments: The author thanks the anonymous referees for their work in commenting
helpfully on an earlier version of this article.
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→
x0−W−L(t)

Figure 1. Sketch of the horizontal flow through the thin barrier −W < x < 0. In the interval
−L(t) < x < −W the wave water moves to the right against the barrier, and free jets flow to the right
into x > 0. The arrangement is periodic in the directions normal to the x-axis. Each dashed rectangular
region in −L < x < 0 is the outline of a control volume between the vertical free surface at the left and
the barrier. For each fixed x, this control volume has cross-sectional area A1.

Figure 2. Time dependence of the dimensionless wave water velocity u∗1(t
∗). Curves drawn for

β = 0.1, 0.2, ..., 1.0. The lowest curve drawn is for β = 0.1; the uppermost line, u1 = 1, is for β = 1.
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Figure 3. The dimensionless pressure eq. (20) at the barrier x∗ = 0−, as a function of t∗. The vertical scale
is logarithmic. See also eq. (31). The curves are drawn for β = 0.1, 0.2, ..., 0.9. The highest initial pressure
is for β = 0.1. The lowest initial pressure is for β = 0.9.

jemimpact3.tex; 12/06/2012; 15:32; p.14



15

Figure 4. The dimensionless cross-sectional area A∗
2 of the jet as a function of x∗ at several instants. The

flow is from left to right as t∗ increases. Drawn for t∗ = 0.1, 0.2, ..., 1.9. Here β = 0.8 > βc. At x∗ = 0+ the
jet tail’s speed and thickness fall to zero at t∗ = T = 1.391, also drawn. At t∗ = T all the fluid is in the
jet. For t∗ > T the head is the widest cross-section of the jet.

Figure 5. The cross-sectional area A∗
2 of the jet as a function of x∗ at several instants, for β = 0.4472 < βc.

The flow is from left to right as t∗ increases. Drawn for t∗ = 0.1, 0.2, ..., 1.0.
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Figure 6. The spatial distribution of velocity in the jet corresponding to the last time t∗ = 1.0 shown in
Fig. 5, for β = 0.4472 < βc.
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