451 research outputs found

    On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values

    Full text link
    Given any fixed N×NN \times N positive semi-definite diagonal matrix G0G\ge 0 we derive the explicit formula for the density of complex eigenvalues for random matrices AA of the form A=UGA=U\sqrt{G}} where the random unitary matrices UU are distributed on the group U(N)\mathrm{U(N)} according to the Haar measure.Comment: 10 pages, 1 figur

    Signatures of criticality arise in simple neural population models with correlations

    Full text link
    Large-scale recordings of neuronal activity make it possible to gain insights into the collective activity of neural ensembles. It has been hypothesized that neural populations might be optimized to operate at a 'thermodynamic critical point', and that this property has implications for information processing. Support for this notion has come from a series of studies which identified statistical signatures of criticality in the ensemble activity of retinal ganglion cells. What are the underlying mechanisms that give rise to these observations? Here we show that signatures of criticality arise even in simple feed-forward models of retinal population activity. In particular, they occur whenever neural population data exhibits correlations, and is randomly sub-sampled during data analysis. These results show that signatures of criticality are not necessarily indicative of an optimized coding strategy, and challenge the utility of analysis approaches based on equilibrium thermodynamics for understanding partially observed biological systems.Comment: 36 pages, LaTeX; added journal reference on page 1, added link to code repositor

    On the resonance eigenstates of an open quantum baker map

    Full text link
    We study the resonance eigenstates of a particular quantization of the open baker map. For any admissible value of Planck's constant, the corresponding quantum map is a subunitary matrix, and the nonzero component of its spectrum is contained inside an annulus in the complex plane, zminzzmax|z_{min}|\leq |z|\leq |z_{max}|. We consider semiclassical sequences of eigenstates, such that the moduli of their eigenvalues converge to a fixed radius rr. We prove that, if the moduli converge to r=zmaxr=|z_{max}|, then the sequence of eigenstates converges to a fixed phase space measure ρmax\rho_{max}. The same holds for sequences with eigenvalue moduli converging to zmin|z_{min}|, with a different limit measure ρmin\rho_{min}. Both these limiting measures are supported on fractal sets, which are trapped sets of the classical dynamics. For a general radius zmin<r<zmax|z_{min}|< r < |z_{max}|, we identify families of eigenstates with precise self-similar properties.Comment: 32 pages, 2 figure

    Fractal Weyl law behavior in an open, chaotic Hamiltonian system

    Get PDF
    We numerically show fractal Weyl law behavior in an open Hamiltonian system that is described by a smooth potential and which supports numerous above-barrier resonances. This behavior holds even relatively far away from the classical limit. The complex resonance wave functions are found to be localized on the fractal classical repeller.Comment: 4 pages, 3 figures. to appear in Phys Rev

    Fractal Weyl law for chaotic microcavities: Fresnel's laws imply multifractal scattering

    Full text link
    We demonstrate that the harmonic inversion technique is a powerful tool to analyze the spectral properties of optical microcavities. As an interesting example we study the statistical properties of complex frequencies of the fully chaotic microstadium. We show that the conjectured fractal Weyl law for open chaotic systems [W. T. Lu, S. Sridhar, and M. Zworski, Phys. Rev. Lett. 91, 154101 (2003)] is valid for dielectric microcavities only if the concept of the chaotic repeller is extended to a multifractal by incorporating Fresnel's laws.Comment: 8 pages, 12 figure

    Spectral problems in open quantum chaos

    Get PDF
    This review article will present some recent results and methods in the study of 1-particle quantum or wave scattering systems, in the semiclassical/high frequency limit, in cases where the corresponding classical/ray dynamics is chaotic. We will focus on the distribution of quantum resonances, and the structure of the corresponding metastable states. Our study includes the toy model of open quantum maps, as well as the recent quantum monodromy operator method.Comment: Compared with the previous version, misprints and typos have been corrected, and the bibliography update

    Non-Markovian Levy diffusion in nonhomogeneous media

    Full text link
    We study the diffusion equation with a position-dependent, power-law diffusion coefficient. The equation possesses the Riesz-Weyl fractional operator and includes a memory kernel. It is solved in the diffusion limit of small wave numbers. Two kernels are considered in detail: the exponential kernel, for which the problem resolves itself to the telegrapher's equation, and the power-law one. The resulting distributions have the form of the L\'evy process for any kernel. The renormalized fractional moment is introduced to compare different cases with respect to the diffusion properties of the system.Comment: 7 pages, 2 figure
    corecore