997 research outputs found
No More Rockin\u27 in the Free World: Removing the Radio Broadcast Exemption, 9 J. Marshall Rev. Intell. Prop. L. 935 (2010)
In an era of boundless technological advancement, the music industry faces its most turbulent economic landscape to date. The sustainability of the industry relies on the emergence of an innovative strategy to adapt music’s business model and continue to incentivize the creation and performance of brilliant music. A modernized industry model necessitates a reorganization of the copyright protections ultimately designed to motivate exceptional musicians. The following comment proposes a shift in one of music’s traditional revenue streams, and examines the controversial public performance exemption provided to broadcast radio. While debate has circulated around the public performance exemption for decades, the changing economic tide has generated new issues and concerns for both the radio and record industries. These issues have made their way to the Congressional floor in the form of the Performance Rights Act (“PRA”). This comment analyzes the arguments for and against enacting the PRA. It further exposes several weaknesses in the radio industry’s attack of the PRA, including an examination of radio’s promotional value, the absence of reciprocal revenue from international stations, and the disparity between digital and broadcast stations. Finally, it gives a practical proposal to amend the PRA and ensure its passage
Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry
Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased
Systematic study of magnetic linear dichroism and birefringence in (Ga,Mn)As
Magnetic linear dichroism and birefringence in (Ga,Mn)As epitaxial layers is
investigated by measuring the polarization plane rotation of reflected linearly
polarized light when magnetization lies in the plane of the sample. We report
on the spectral dependence of the rotation and ellipticity angles in a broad
energy range of 0.12-2.7 eV for a series of optimized samples covering a wide
range on Mn-dopings and Curie temperatures and find a clear blue shift of the
dominant peak at energy exceeding the host material band gap. These results are
discussed in the general context of the GaAs host band structure and also
within the framework of the k.p and mean-field kinetic-exchange model of the
(Ga,Mn)As band structure. We find a semi-quantitative agreement between
experiment and theory and discuss the role of disorder-induced non-direct
transitions on magneto-optical properties of (Ga,Mn)As.Comment: 18 page
Hofstadter butterflies of carbon nanotubes: Pseudofractality of the magnetoelectronic spectrum
The electronic spectrum of a two-dimensional square lattice in a
perpendicular magnetic field has become known as the Hofstadter butterfly
[Hofstadter, Phys. Rev. B 14, 2239 (1976).]. We have calculated
quasi-one-dimensional analogs of the Hofstadter butterfly for carbon nanotubes
(CNTs). For the case of single-wall CNTs, it is straightforward to implement
magnetic fields parallel to the tube axis by means of zone folding in the
graphene reciprocal lattice. We have also studied perpendicular magnetic fields
which, in contrast to the parallel case, lead to a much richer, pseudofractal
spectrum. Moreover, we have investigated magnetic fields piercing double-wall
CNTs and found strong signatures of interwall interaction in the resulting
Hofstadter butterfly spectrum, which can be understood with the help of a
minimal model. Ubiquitous to all perpendicular magnetic field spectra is the
presence of cusp catastrophes at specific values of energy and magnetic field.
Resolving the density of states along the tube circumference allows recognition
of the snake states already predicted for nonuniform magnetic fields in the
two-dimensional electron gas. An analytic model of the magnetic spectrum of
electrons on a cylindrical surface is used to explain some of the results.Comment: 14 pages, 12 figures update to published versio
The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool
Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections
Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop
Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signatures at specified distances and off-track angles, using an inviscid, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft configuration with a powered nacelle. For efficiency, boom carpets are decomposed into sets of independent meshes and computed in parallel. This also facilitates the use of more effective meshing strategies - each off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also presented for the two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Burgers' equation method (NASA's sBOOM), and ground noise metrics are computed with LCASB
- …