37 research outputs found

    Specificity of DNA-binding by the FAX-1 and NHR-67 nuclear receptors of Caenorhabditis elegans is partially mediated via a subclass-specific P-box residue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The nuclear receptors of the NR2E class play important roles in pattern formation and nervous system development. Based on a phylogenetic analysis of DNA-binding domains, we define two conserved groups of orthologous NR2E genes: the NR2E1 subclass, which includes <it>C. elegans nhr-67, Drosophila tailless </it>and <it>dissatisfaction</it>, and vertebrate Tlx (NR2E2, NR2E4, NR2E1), and the NR2E3 subclass, which includes <it>C. elegans fax-1 </it>and vertebrate PNR (NR2E5, NR2E3). PNR and Tll nuclear receptors have been shown to bind the hexamer half-site AAGTCA, instead of the hexamer AGGTCA recognized by most other nuclear receptors, suggesting unique DNA-binding properties for NR2E class members.</p> <p>Results</p> <p>We show that NR2E3 subclass member FAX-1, unlike NHR-67 and other NR2E1 subclass members, binds to hexamer half-sites with relaxed specificity: it will bind hexamers with the sequence ANGTCA, although it prefers a purine to a pyrimidine at the second position. We use site-directed mutagenesis to demonstrate that the difference between FAX-1 and NHR-67 binding preference is partially mediated by a conserved subclass-specific asparagine or aspartate residue at position 19 of the DNA-binding domain. This amino acid position is part of the "P box" that plays a critical role in defining binding site specificity and has been shown to make hydrogen-bond contacts to the second position of the hexamer in co-crystal structures for other nuclear receptors. The relaxed specificity allows FAX-1 to bind a much larger repertoire of half-sites than NHR-67. While NR2E1 class proteins bind both monomeric and dimeric sites, the NR2E3 class proteins bind only dimeric sites. The presence of a single strong site adjacent to a very weak site allows dimeric FAX-1 binding, further increasing the number of dimeric binding sites to which FAX-1 may bind <it>in vivo</it>.</p> <p>Conclusion</p> <p>These findings identify subclass-specific DNA-binding specificities and dimerization properties for the NR2E1 and NR2E3 subclasses. For the NR2E1 protein NHR-67, Asp-19 permits binding to AAGTCA half-sites, while Asn-19 permits binding to AGGTCA half-sites. The apparent conservation of DNA-binding properties between vertebrate and nematode NR2E receptors allows for the possibility of evolutionarily-conserved regulatory patterns.</p

    Transcriptional Control of Steroid Biosynthesis Genes in the Drosophila Prothoracic Gland by Ventral Veins Lacking and Knirps.

    Get PDF
    Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development

    Canalization of Gene Expression and Domain Shifts in the Drosophila Blastoderm by Dynamical Attractors

    Get PDF
    The variation in the expression patterns of the gap genes in the blastoderm of the fruit fly Drosophila melanogaster reduces over time as a result of cross regulation between these genes, a fact that we have demonstrated in an accompanying article in PLoS Biology (see Manu et al., doi:10.1371/journal.pbio.1000049). This biologically essential process is an example of the phenomenon known as canalization. It has been suggested that the developmental trajectory of a wild-type organism is inherently stable, and that canalization is a manifestation of this property. Although the role of gap genes in the canalization process was established by correctly predicting the response of the system to particular perturbations, the stability of the developmental trajectory remains to be investigated. For many years, it has been speculated that stability against perturbations during development can be described by dynamical systems having attracting sets that drive reductions of volume in phase space. In this paper, we show that both the reduction in variability of gap gene expression as well as shifts in the position of posterior gap gene domains are the result of the actions of attractors in the gap gene dynamical system. Two biologically distinct dynamical regions exist in the early embryo, separated by a bifurcation at 53% egg length. In the anterior region, reduction in variation occurs because of stability induced by point attractors, while in the posterior, the stability of the developmental trajectory arises from a one-dimensional attracting manifold. This manifold also controls a previously characterized anterior shift of posterior region gap domains. Our analysis shows that the complex phenomena of canalization and pattern formation in the Drosophila blastoderm can be understood in terms of the qualitative features of the dynamical system. The result confirms the idea that attractors are important for developmental stability and shows a richer variety of dynamical attractors in developmental systems than has been previously recognized

    Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps

    No full text
    The body pattern along the anterior-posterior axis of the insect embryo is thought to be established by two organizing centres localized at the ends of the egg. Genetic analysis of the polarity-organizing centres in Drosophila has identified three distinct classes of maternal effect genes that organize the anterior, posterior and terminal pattern elements of the embryo. The factors provided by these gene classes specify the patterns of expression of the segmentation genes at defined positions along the longitudinal axis of the embryo. The system responsible for organizing the posterior segment pattern is a group of at least seven maternal genes and the zygotic gap gene knirps (kni). Their mutant phenotype has adjacent segments in the abdominal region of the embryo deleted. Genetic analysis and cytoplasmic transplantation experiments suggested that these maternal genes are required to generate a 'posterior activity' that is thought to activate the expression of kni (reviewed in ref. 2). The molecular nature of the members of the posterior group is still unknown. Here we report the molecular characterization of the kni gene that codes for a member of the steroid/thyroid receptor superfamily of proteins which in vertebrates act as ligand-dependent DNA-binding transcription regulators

    MOEMS laser projector for handheld devices featuring motion compensation

    No full text
    Laser projection has been realized using a 2d micromechanical scanner mirror. For handheld devices it is advantageous to compensate motion. This can be realized using inertial sensors for motion detection and the implementation of a compensation algorithms. The projector must provide sufficient dynamic range for the compensation. A demo system was realized and tested succesfully

    Gradients of Krüppel and knirps gene products direct pair-rule gene stripe patterning in the posterior region of the Drosophila embryo

    No full text
    Abdominal segmentation of the Drosophila embryo requires the activities of the gap genes Krüppel (Kr), knirps (kni), and tailless (tll). They control the expression of the pair-rule gene hairy (h) by activating or repressing independent cis-acting units that generate individual stripes. Kr activates stripe 5 and represses stripe 6, kni activates stripe 6 and represses stripe 7, and tll activates stripe 7. Kr and kni proteins bind strongly to h control units that generate stripes in areas of low concentration of the respective gap gene products and weakly to those that generate stripes in areas of high gap gene expression. These results indicate that Kr and kni proteins form overlapping concentration gradients that generate the periodic pair-rule expression pattern

    Functional and conserved domains of the Drosophila transcription factor encoded by the segmentation gene knirps.

    No full text
    The Drosophila gap gene knirps (kni) is required for abdominal segmentation. It encodes a steroid/thyroid orphan receptor-type transcription factor which is distributed in a broad band of nuclei in the posterior region of the blastoderm. To identify essential domains of the kni protein (KNI), we cloned and sequenced the DNA encompassing the coding region of nine kni mutant alleles of different strength and kni-homologous genes of related insect species. We also examined in vitro-modified versions of KNI in various assay systems both in vitro and in tissue culture. The results show that KNI contains several functional domains which are arranged in a modular fashion. The N-terminal 185-amino-acid region which includes the DNA-binding domain and a functional nuclear location signal fails to provide kni activity to the embryo. However, a truncated KNI protein that contains additional 47 amino acids exerts rather strong kni activity which is functionally defined by a weak kni mutant phenotype of the embryo. The additional 47-amino-acid stretch includes a transcriptional repressor domain which acts in the context of a heterologous DNA-binding domain of the yeast transcriptional activator GAL4. The different domains of KNI as defined by functional studies are conserved during insect evolution

    Modular Ultrasound Array Doppler Velocimeter with FPGA-based Signal Processing for Real-time Flow Mapping in Liquid Metal

    Get PDF
    AbstractInvestigating the complex interaction of conductive fluids and magnetic fields is relevant for a variety of applications from basic research in magnetohydrodynamics (MHD) to modeling industrial processes involving metal melts, such as the crystal growth process in the photovoltaic industry. This enables targeted optimizations of the melt flow and allows to significantly increase the yield and energy efficiency of industrial processes. However, experimental studies in this field are often limited by the performance of flow instrumentation for opaque liquids. We present an ultrasound array Doppler velocimeter (UADV) for flow mapping in opaque liquids at room temperature. It is modular and flexible regarding its measurement configuration, for instance it allows capturing two velocity components in two planes (2d − 2c). It uses up to 9 linear arrays with a total element count of 225, driven in a parallelized time division multiplex (TDM) scheme. A FPGA-based signal pre-processing allows to handle the massive data bandwidth of typ. 1.2 GB/s and enables a continuous and near-realtime operation of the measurement system. The capabilities of the UADV system are demonstrated in a basic MHD research experiment with a metal melt (GaInSn) in a cubic container of (67mm)3. The flow induced by a rotating magnetic field is captured with a temporal resolution of 250ms for the horizontal and vertical central cross-section of the cube
    corecore