106 research outputs found

    Variation of strong correlation effects in A-site ordered perovskites CaCu3Ti4-xRuxO12: Photoemission and inverse photoemission studies

    Full text link
    We have systematically studied the strong correlation effects in A-site ordered perovskites CaCu3Ti4-xRuxO12 (x = 0, 1, 3.5, 4) by using photoemission and inverse photoemission spectroscopies. In x = 0, 1, 3.5, the peak positions of the strongly correlated Cu 3d states around -3.8 eV and Ti 3d states around 3.6 eV little change. On the other hand, in x = 4, the Cu 3d states is observed around -2.5 eV. These indicate that Ti plays an important role to retain the strong correlation effects. In addition, the multiplet structures of Cu 3d final states from -8 to -15 eV become weak as Ru increases, indicating the reduction of the localized characters of Cu 3d states. At the Fermi level, we observe the absence of spectral weight in x = 0, 1 and the development of Ru 4d in-gap states between the Cu 3d and Ti 3d peaks in x = 3.5, 4, which give rise to the metal-insulator transition between x = 1 and x = 3.5.Comment: 12 pages, 3 figure

    Unoccupied topological surface state in Bi2_{2}Te2_{2}Se

    Full text link
    Bias voltage dependent scattering of the topological surface state is studied by scanning tunneling microscopy/spectroscopy for a clean surface of the topological insulator Bi2_2Te2_2Se. A strong warping of constant energy contours in the unoccupied part of the spectrum is found to lead to a spin-selective scattering. The topological surface state persists to higher energies in the unoccupied range far beyond the Dirac point, where it coexists with the bulk conduction band. This finding sheds light on the spin and charge dynamics over the wide energy range and opens a way to designing opto-spintronic devices.Comment: 5 pages, 4 figure

    Surface Scattering via Bulk Continuum States in the 3D Topological Insulator Bi2_{2}Se3_{3}

    Get PDF
    We have performed scanning tunneling microscopy and differential tunneling conductance (dI/dVdI/dV) mapping for the surface of the three dimensional topological insulator Bi2_{2}Se3_{3}. The fast Fourier transformation applied to the dI/dVdI/dV image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.Comment: 5 pages, 4 figure

    The gigantic Rashba effect of surface states energetically buried in the topological insulator Bi2Te2Se

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.We have clarified that a topological insulator, Bi2Te 2Se, shows two surface states with gigantic Rashba-type spin-splitting located at a binding energy deeper than the topological surface state. The magnitude of the Rashba parameter, as well as the momentum splitting, is found to be large enough to realize a number of nanometer-sized spintronic devices. This novel finding paves the way to studies of gigantic Rashba systems that are suitable for future spintronic applications. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.A portion of this work has been done under the Japan–Russia Bilateral Joint Research Project (JSPS). This work was financially supported by KAKENHI (grant nos. 23340105, 23244066, 25800179), Grant-in-Aid for Scientific Research (A), (B) and for Young Scientists (B) of JSPS. KAK and OET acknowledge financial support by the RFBR (grant nos. 13-02-92105 and 12-02-00226), and by the Ministry of Education and Science of the Russian Federation.Peer Reviewe
    corecore