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Abstract
We have clarified that a topological insulator, Bi2Te2Se, shows two surface
states with gigantic Rashba-type spin-splitting located at a binding energy
deeper than the topological surface state. The magnitude of the Rashba para-
meter, as well as the momentum splitting, is found to be large enough to realize a
number of nanometer-sized spintronic devices. This novel finding paves the way
to studies of gigantic Rashba systems that are suitable for future spintronic
applications.
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1. Introduction

Topological insulators and Rashba systems have attracted a great deal of attention as key
materials to revolutionize spin current devices without external magnetic fields [1–4]. In these
nonmagnetic materials, the spin degeneracy is lifted by spin-orbit interactions in combination
with broken space inversion symmetry. These systems have been extensively studied in recent
years by angle-resolved photoemission spectroscopy (ARPES), spin- and angle-resolved
photoemission spectroscopy (spin-ARPES) and first-principles calculations [5–37]. In
particular, the spin characteristics of the surface states have been discussed in detail. In ideal
topological insulators and Rashba systems, the spins are completely oriented in-plane and
normal to the electron momenta, forming a helical spin texture.

The ideal two-dimensional Rashba effect is explained by the Rashba Hamiltonian (HR) [6].

α σ= · ×∥( )( )H k k e (1)R zR

From the Hamiltonian, the Rashba effect leads to a spin-splitting of the parabolic band
dispersion, as described below [6]
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2 . In many cases, the Rashba parameter αR is thought to be the most

important for highly efficient spintronic devices such as spin-field-effect transistors (spin-
FETs). Since the source–drain distance (L) of spin-FETs is required to be larger than the
characteristic half-wavelength π k0 [2], and ER is directly linked to the stability of the device
operated at elevated temperatures, one should also pay more attention to k0 and ER. In fact, the

spin-splitting size needs to be more than k0 = 0.1 Å−1
and ER = 200 meV in order to downsize the

channel length to a few nanometers and to realize stable device operation at room temperature.
However, the spin-splitting size is currently insufficient in the Rashba systems discovered so
far, including the (111) surfaces of Au, Bi and Sb [6–13], as well as Bi/Ag(111)[14, 15] and
bulk BiTeI, etc [16–20]. Therefore, as a first approach we need to discover Rashba systems with
larger spin-splitting. In this context, topological insulators or similar compounds might have the
potential to show a larger Rashba effect due to the much stronger spin-orbit interaction than in
well-known Rashba systems.

Here, we present a deeper-lying surface state with gigantic Rashba spin-splitting in the
topological insulator Bi2Te2Se, studied using state-of-the-art spin-ARPES. Previously, we
clarified that the highly spin-polarized natures of topological surface states (TSSs) are persistent
above and below the Dirac point in this material [23, 40]. These findings can be a platform for
future studies on gigantic Rashba systems that are suitable for spintronic devices.
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2. Experimental

The ARPES experiment was performed at the bending-magnet beam line (BL-7) with a
hemispherical analyzer (VG Scienta SES 2002) at the Hiroshima Synchrotron Radiation Center
(HSRC). The spin-ARPES experiment was done at the APPLE-II type variable polarization
undulator beam line (BL-9B) at HSRC. Our spin-ARPES system is equipped with a
hemispherical electron analyzer (VG Scienta R-4000) combined with a pair of very low energy
electron diffraction (VLEED)-type spin detectors, and achieves much higher efficiency
(ϵ ∼ −10 2) than conventional Mott-type spin detectors (ϵ ∼ −10 4) [41]. The spin-ARPES system
can resolve both out-of-plane (Pz) and in-plane (Px and Py) spin polarization components with

high angular and energy resolutions, as schematically shown in figure 1(a). The signs of the
polar (θ) and tilt angles (θt) of the sample are defined as positive, in the case of anticlockwise
rotation about the x axis and clockwise rotation about the y axis, respectively. The overall
energy and angular resolutions for ARPES (ARPES and spin-ARPES) were set to 40 meV
(20 meV) and 0.3° (0.75°) at BL-7 (BL-9B), and all measurements were performed at a sample
temperature of 70 K. The samples were cleaved in-situ under an ultra-high vacuum below

× −1 10 Pa8 . ARPES at BL-7 was conducted using synchrotron radiation with photon energies
( νh s) ranging from 21 to 60 eV. Spin-ARPES and ARPES at BL-9B were performed with a
high-flux He-discharge lamp ( νh = 21.22 eV).
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Figure 1. (a) Schematic of our efficient, spin-resolved spectroscopy machine, and the
experimental geometry. (b)–(e) The energy-band dispersion curves along ΓM taken by a
p-polarized synchrotron radiation light of νh = 21, 25, 30 and 46 eV.



3. Results and Discussion

Figures 1(b)–(e) show the selected ARPES results obtained by several photon energies along
the ΓM line. The energy dispersion curve taken at 21 eV shows two upward-convex parabolic
states (dashed line), as well as another upward-convex arc, with the energy maximum at a
binding energy (EB) of 1.75 eV, at the Γ̄ point. In particular, two characteristic parabolic bands

(S1) with an energy maximum of EB = 0.75 eV and a wavenumber of ± Å0.135 are clearly

observed, with a crossing at EB = 1.25 eV at the Γ̄ point. In figures 1(c)–(e), the results for
νh = 25, 35 and 46 eV present one TSS near the Fermi energy, as already reported by several
groups [23, 24] and the parabolic band structure (S1) without changing band shape. The weak
broad, bulk band structure (B) is also observed close to the S1 state below 1.25 eV. Note that the
particular parabolic band S1 can be observed with all photon energies in our study as keeping the
energy maxima, the crossing point at the same energy, and the same k-position, which confirms
its two-dimensional nature. More interestingly, the surface state S1 is likely to show extremely
large Rashba-type spin-splitting.

The two-dimensional slices in the k space for TSS and S1 at several constant energies are
shown in figure 2. Figure 2(b) demonstrates a typical hexagonal deformation of TSS, which
evolves into a circular shape on approaching the crossing point. We find that the band
dispersion along the ΓK line gradually becomes steeper toward EF, while it is almost straight

along the ΓM line, which actually reflects the deformation of constant energy contours (CECs).
Near the crossing point, the bulk valence band forms a six-fold petal-like pattern. These results
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Figure 2. (a), (c) ARPES results taken by p-polarized light of two photon energies
( ν =h 34, 21 eV) suitable for the observation of TSS and S1 along ΓK . (b), (d) The
constant energy contours for two different surface states at several binding energies
from 0 to 0.41 eV and from 0.75 to 1.55 eV.



are in agreement with a previous report for TSS [24]. The S1 in figure 2(d) is also visible as the
hexagonal-shaped CECs at EB = 0.75 eV. The CEC for the inner part of S1 evolves into a circular
shape upon approaching the crossing point (EC), and again into a hexagonal-shape in going

further to deeper EB, but the shape is rotated by 90° with respect to the CEC above the crossing
point. On the other hand, the outer part of S1 exhibits a snowflake-like pattern down to 1 eV and
disappears below 1 eV. Here, we find that the characteristic deformation is abnormal for S1 at
the band top, and is rotated by 90° with respect to the TSS.

To unravel the spin characteristics of S1, we performed the spin-ARPES measurement
excited with unpolarized He αI light ( νh = 21.223 eV). Figure 3(a) shows the spin-resolved

energy distribution curves (EDCs) for EB = 0-2.3 eV for several emission angles along the ΓM
line. Here, spin-up and spin-down spectra are plotted with upright and inverted triangles,
respectively. In the EDC for normal emission, two features are observed at EB = 1.75 and
1.25 eV in both spin channels. The peak around 1.75 eV shifts to higher EB as θ increases.
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Figure 3. (a) Spin-resolved energy distribution curves (EDCs) of Bi2Te2Se along ΓM
obtained by unpolarized He-Iα radiation. (b) The spin characters derived from the spin-
resolved spectra in figure 3(a) are superimposed in E-k mapping by ARPES
measurements with a He discharge lamp. (c) Spin-resolved EDCs along ΓK by
unpolarized He-Iα radiation for spin components of Py and Pz. The schematic diagrams

of (d) show band dispersion along ΓK (bottom part), and a two-dimensional map (top
part) for the S1 band and its spin orientations. The arrows indicate the spin orientation
for the S1 state, and the red (blue) and white colors show the positive (negative) and zero
values of the out-of-plane spin polarization, respectively.



Since these features are almost spin degenerate and the band shape also changes as a function of
νh , as shown in figures 1(b)–(e), this can be assigned to the bulk-derived state. For the
prominent S1 state, the spin-up peak shifts to higher EB with increasing θ from 0 to 2.3°, and

splits into two branches from 3.8°. We also notice that one spin-down branch shifts to lower EB

and another branch moves to lower EB up to 0.7°and higher EB above 0.7°. For negative θ, we
observe the same −E k dispersion but with opposite spin polarization signs. This result clearly
shows that the S1 band is spin-split and the spin orientation is antisymmetric with respect to the

Γ̄ point. We also find that the lower-EB branch of S1 is followed by weak features of the opposite
spin spectra in the limited range of theta (−5.3 < θ< −1.3, 2.3 < θ < 5.3), as indicated by the
open circles. The intensities of these peaks do not exceed those for the opposite spin channel at
the same EB, even if the photon energy is changed (not shown here). Moreover, we can observe
a shoulder structure for the opposite spin channel at the same EB as the weak peak indicated by
the circles at θ = ± °2.3 . This result implies that these peaks have no spin polarization. We
believe that the lower-EB branch of S1 stems from a bulk state corresponding to the weak broad
structure (B) shown in figures 1(b)–(e). In figures 3(b), we assigned spin characters to the
dominant spectral features in the contour plot using upright and inverted triangles. It is
identified that there is another spin-split band (S2). This S2 state is not clearly noticed from the
ARPES results in figure 1, because it overlaps considerably with the S1 band in a wide
momentum range, and the relevant spectral weight is weak. The S2 state also shows a spin-

splitting with an antisymmetric spin orientation with respect to the Γ̄ point.
As the most important experimental finding, the spin polarized band S1 is found to show

gigantic Rashba spin-splitting. Now, we try to get more insight into this particular band.
Generally, the Rashba Hamiltonian without considering crystal symmetry is given by equation
(1). In many cases, the Rashba parameter representing the magnitude of Rashba spin-splitting is
experimentally estimated by α = E k2R R 0 from the ARPES results. In the present material, ER

and k0 are 0.5 eV and Å−
0.135

1
, respectively. Using these values, we can estimate

α = · Å7.4 eVR , which is more than twice as large as the reported value for the ‘giant

Rashba system’ [14, 18, 19]. Moreover, the more important parameters ER and k0 show
sufficient magnitudes to realize a few nanometer-sized spin current devices operated at room
temperature. The Rashba spin-split band with such large ER and k0 has thus been discovered for
the first time, and we call this the ‘gigantic Rashba effect’.

Next, we perform the spin-ARPES measurement of the Rashba spin-split band along ΓK
to explore its spin texture, as shown in figure 3(c). Here, the effective Hamiltonian of the spin-
orbit interaction with a combination of three-fold symmetry is expressed by [36]

α α σ σ α ϕσ= + − +( )( )( )H k k k kk cos 3 (3)R
C

x y y x z1 3
1 2

3
2 3V3

Here, kx and ky correspond to the wave vectors along the ΓK and ΓM directions, and

ϕ = ( )k karccos x . When the warping parameter α3
2 is non-zero, a deformation of CECs takes

place and the out-of-plane spin component emerges in the spin-split band along ΓK at the same
time. Figure 3(c) shows that the spin-ARPES results resolve the in-plane (Py) and out-of-plane

(Pz) spin components at θ = ± °5 , corresponding to the wavenumber near the top of the S1 band
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along ΓK . The in-plane spin-resolved EDC at θ = 5° in figure 3(c) shows the spin-up and spin-
down peaks at 1.75 and 0.85 eV, respectively, both of which correspond to the spin-split S1

band, while the spin-up peak at 2.2 eV comes from the S2 state. It is also noted that the spin-up
and spin-down peaks of the S1 state show a distinct out-of-plane spin component. This result
implies that the observed deformation of CECs is explained by a hexagonal warping effect, as
represented by equation (3). Figure 3(d) schematically shows the experimentally observed spin
texture. Here, the arrows exhibit spin vectors determined from our spin-ARPES result by taking
the C V3 crystal symmetry into account. The red (blue) and white colors show the positive
(negative) and zero values of the out-of-plane spin polarization, respectively. The out-of-plane
spin component takes a maximum at the ΓK direction and the in-plane spin component shows a
helical spin texture. The spin features and CECs for each surface state resemble Bi/Ag(111),
which is well known to show the giant Rashba effect. A strong in-plane potential gradient
related to the warping parameter α3

2 might also be a trigger of the gigantic Rashba effect in this
system, as theoretically explained for Bi/Ag(111) [14, 36, 42]. Moreover, the sign of the in-
plane spin component for the S1 state at 1.75 eV is identical to that for the S2 state located at
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Figure 4. (a)–(c) Schematic figure for the Rashba spin-split band along ΓK (dashed
line) and ΓM (solid line). (d) The anisotropic constant energy contours (CECs) at Ea.



2.2 eV. Nevertheless, each out-of-plane spin component becomes the opposite. The difference
in the out-of-plane spin component for S1 and S2 implies that the sign of α3

2 for S1 is reversed in
comparison with that of S2. The origin of the observed sign reversal in the out-of-plane spin
polarizations is unknown at present. However, if we assume that the charge densities of S1 and
S2 residing at the topmost and bottom Te (Bi) layers in one quintuple layer on the surface or

vice versa are rotated 180° to each other, then the out-of-spin polarization could change its sign.
Different orbital symmetries could also explain the observed sign reversal.

Finally, we discuss the hexagonal deformation in CECs of S1, which is rotated by 90° with
respect to that for TSS. At one constant energy (Ea) above the crossing point, as shown in

figure 4(a)–(c), the band dispersion along the ΓM line (ΓK line) crosses two points, ′kM and ″kM

( ′kK and ″kK). In figure 4(a), the band dispersion along the ΓK line is steeper than that along the

ΓM for <∥k k0 (Region I), and thus ′kM becomes longer than ′kK. On the other hand, for

>∥k k0 (Region II), ″kM becomes smaller than ″kK. Consequently, the observed CECs are

different in two regions. (1) In the region of <∥k k0 , the CEC shows a hexagonal shape with

vertices in the ΓM line, as is typically found for TSS. (2) For >∥k k0 , the hexagonal shape or

snowflake-like pattern of CEC is rotated by 90°. The resulting constant energy contours at Ea are
drawn in figure 4(d). As one can see from figure 4(b)–(d), the outer CEC (Region II) shows a
hexagonal shape that is rotated by 90° with respect to the inner one (Region I) and also to the
TSS (see figure 2(a)). The two CECs are merged into one around the top of the band. By
considering the fact that the outer CEC shows a stronger spectral weight than that of the inner
one, which is probably due to the photoemission matrix element effect, we can understand that
the anisotropic constant energy contour at 0.75 eV for S1 is rotated by 90° with respect to those
of TSS and S1 at 1.55 eV, as shown in figure 2.

4. Summary

Gigantic Rashba spin-split bands have been observed in the topological insulator Bi2Te2Se by
the ARPES and spin-ARPES experiments. The two-dimensional constant energy contours, as
well as their spin textures, clearly show the peculiarity in the warping effect. Importantly, the
magnitude of the Rashba parameter is found to be large enough to realize a few nanometer-
sized spin current electronic devices. Moreover, two different spin-split S1 and S2 states possess
warping parameters with the opposite sign, even in the same crystal. This novel finding opens a
pathway to studies of exotic electrical and optical phenomena driven by the gigantic Rashba
effect.
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