3,974 research outputs found
Genome Research and Traditional Intellectual Property Protection -- A Bad Fit?
Dr. Murashige addresses the need for a patent system more closely tailored to the needs of biotechnology. For example, the obviousness requirement may interfere with using patents to recoup high costs of work when it could arguably be done by researchers of ordinary skill
Overview of Potential Intellectual Property Protection for Biotechnology
Dr. Murashige compares the function and value of copyright, patent and trade secret laws in recovering investments in developing genome-related biotechnology
The Rockefeller Foundation's International Program on Rice Biotechnology
Presents the product of a two-year intensive survey and analysis of the genetic prospects for the world's major food crops conducted in the early 1980s
Cold Induction of EARLI1, a Putative Arabidopsis Lipid Transfer Protein, Is Light and Calcium Dependent
As sessile organisms, plants must adapt to their environment. One approach toward understanding this adaptation is to investigate environmental regulation of gene expression. Our focus is on the environmental regulation of EARLI1, which is activated by cold and long-day photoperiods. Cold activation of EARLI1 in short-day photoperiods is slow, requiring several hours at 4ºC to detect an increase in mRNA abundance. EARLI1 is not efficiently cold-activated in etiolated seedlings, suggesting that photomorphogenesis is necessary for its cold activation. Cold activation of EARLI1 is inhibited in the presence of the calcium channel blocker lanthanum chloride or the calcium chelator EGTA. Addition of the calcium ionophore Bay K8644 results in cold-independent activation of EARLI1. These data suggest that EARLI1 is not an immediate target of the cold response, and that calcium flux affects its expression. EARLI1 is a putative secreted protein and has motifs found in lipid transfer proteins. Over-expression of EARLI1 in transgenic plants results in reduced electrolyte leakage during freezing damage, suggesting that EARLI1 may affect membrane or cell wall stability in response to low temperature stress
Time-of-flight analysis of charge mobility in a Cu-phthalocyanine-based discotic liquid crystal semiconductor
We used a time-of-flight method to study the charge carrier mobility properties of a molecular-aligned discotic liquid crystal semiconductor based on Cu-phthalocyanine. The heated isotropic-phase semiconductor material was sandwiched between transparent electrodes coated onto glass substrates without conventional alignment layers. This was then cooled, and a discotic liquid crystal semiconductor cell was obtained, which we used to make mobility measurements. The material had a fixed molecular alignment due to the supercooling of the hexagonal columnar mesophase. It was clarified that the carrier mobility for electrons was as high as it was for holes at room temperature. The maximum value of negative charge mobility reached 2.60x10(-3) cm(2)/V s, although negative carrier mobility is often much lower than positive carrier mobility in other organic semiconductors, including conventional Cu-phthalocyanine vacuum-deposited films.ArticleAPPLIED PHYSICS LETTERS. 85(16):3474-3476 (2004)journal articl
Synthetic carbohydrate: An aid to nutrition in the future
The synthetic production of carbohydrate on a large scale is discussed. Three possible nonagricultural methods of making starch are presented in detail and discussed. The simplest of these, the hydrolysis of cellulose wastes to glucose followed by polymerization to starch, appears a reasonable and economic supplement to agriculture at the present time. The conversion of fossil fuels to starch was found to be not competitive with agriculture at the present time, but tractable enough to allow a reasonable plant design to be made. A reconstruction of the photosynthetic process using isolated enzyme systems proved technically much more difficult than either of the other two processes. Particular difficulties relate to the replacement of expensive energy carrying compounds, separation of similar materials, and processing of large reactant volumes. Problem areas were pinpointed, and technological progress necessary to permit such a system to become practical is described
Establishment of endomycorrhizal fungi on micropropagated teak (Tectona grandis L.f.)
No abstract available
In Vitro Cultures of Schisandra chinensis (Turcz.) Baill. (Chinese Magnolia Vine)—a Potential Biotechnological Rich Source of Therapeutically Important Phenolic Acids
The contents of free phenolic acids and cinnamic acid were determined using an HPLC method in methanolic extracts from biomass of Schisandra chinensis (Turcz.) Baill. (Chinese magnolia vine) at different stages of organogenesis, cultured in vitro on a few variants of Murashige and Skoog (MS) medium, containing different concentrations of plant growth regulators 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (from 0.1 to 3.0 mg/l) and in extracts from overground parts of plants growing in vivo. Six of 12 analysed compounds were detected in all extracts: chlorogenic, p-coumaric, p-hydroxybenzoic, protocatechuic, salicylic and syringic acids. Total contents of the examined metabolites in biomass of shoot-differentiating callus culture cultivated on six MS medium variants were dependent on concentrations of growth regulators in the media and ranged from 14.90 to 60.05 mg/100 g d.w. Total contents of the compounds in biomass extracts from undifferentiating callus culture maintained only on two of six MS medium variants were higher and amounted to 74.54 and 78.24 mg/100 g d.w. Maximum total contents of phenolic acids in both types of in vitro cultures were greater than in fruits (55.73 mg/100 g d.w.) and leaves (4.55 mg/100 g d.w.) of plants gowning in vivo. Chlorogenic acid and salicylic acid were the main compounds identified in biomass extracts of shoot-differentiating callus cultures (max 22.60 and 21.17 mg/100 g d.w., respectively), while chlorogenic acid (max 38.43 mg/100 g d.w.) and protocatechuic acid (max 20.95 mg/100 g d.w.) prevailed in the extracts from undifferentiating callus cultures. Other compounds dominated in fruits, namely p-coumaric acid (23.36 mg/100 g d.w.) and syringic acid (14.96 mg/100 g d.w.). This is the first report on biochemical potential of cells from S. chinensis in vitro cultures to produce the biologically active phenolic acids. These are the first results on the analysis of this group of metabolites in overground parts of plants growing in vivo, too
Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis
Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species
- …