237 research outputs found

    Piezo1 channel activation mimics high glucose as a stimulator of insulin release

    Get PDF
    Glucose and hypotonicity induced cell swelling stimulate insulin release from pancreatic β-cells but the mechanisms are poorly understood. Recently, Piezo1 was identified as a mechanically-activated nonselective Ca2+ permeable cationic channel in a range of mammalian cells. As cell swelling induced insulin release could be through stimulation of Ca2+ permeable stretch activated channels, we hypothesised a role for Piezo1 in cell swelling induced insulin release. Two rat β-cell lines (INS-1 and BRIN-BD11) and freshly-isolated mouse pancreatic islets were studied. Intracellular Ca2+ measurements were performed using the fura-2 Ca2+ indicator dye and ionic current was recorded by whole cell patch-clamp. Piezo1 agonist Yoda1, a competitive antagonist of Yoda1 (Dooku1) and an inactive analogue of Yoda1 (2e) were used as chemical probes. Piezo1 mRNA and insulin secretion were measured by RT-PCR and ELISA respectively. Piezo1 mRNA was detected in both β-cell lines and mouse islets. Yoda1 evoked Ca2+ entry was inhibited by Yoda1 antagonist Dooku1 as well as other Piezo1 inhibitors gadolinium and ruthenium red, and not mimicked by 2e. Yoda1, but not 2e, stimulated Dooku1-sensitive insulin release from β-cells and pancreatic islets. Hypotonicity and high glucose increased intracellular Ca2+ and enhanced Yoda1 Ca2+ influx responses. Yoda1 and hypotonicity induced insulin release were significantly inhibited by Piezo1 specific siRNA. Pancreatic islets from mice with haploinsufficiency of Piezo1 released less insulin upon exposure to Yoda1. The data show that Piezo1 channel agonist induces insulin release from β-cell lines and mouse pancreatic islets suggesting a role for Piezo1 in cell swelling induced insulin release. Hence Piezo1 agonists have the potential to be used as enhancers of insulin release

    Measuring quality of life of people with predementia and dementia and their caregivers: a systematic review protocol

    Get PDF
    Introduction Dementia is the fastest growing major cause of disability globally and may have a profound impact on the health-related quality of life (HRQoL) of both the patient with dementia and those who care for them. This review aims to systematically identify and synthesise the measurements of HRQoL for people with, and their caregivers across the full spectrum of, dementia from its preceding stage of predementia to end of life. Methods and analysis A systematic literature review was conducted in Medical Literature Analysis and Retrieval System Online , ExcerptaMedicadataBASE, Cochrane Database of Systematic Reviews , Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews of Effect, National Health Service Economic Evaluation Database and PsycINFO between January 1990 and the end of April 2017. Two reviewers will independently assess each study for inclusion and disagreements will be resolved by a third reviewer. Data will be extracted using a predefined data extraction form following best practice. Study quality will be assessed with the Effective Public Health Practice Project quality assessment tool. HRQoL measurements will be presented separately for people with dementia and caregivers by instrument used and, when possible, HRQoL will be reported by disease type and stage of the disease. Descriptive statistics of the results will be provided. A narrative synthesis of studies will also be provided discussing differences in HRQoL measurements by instrument used to estimate it, type of dementia and disease severity. Ethics and dissemination This systematic literature review is exempt from ethics approval because the work is carried out on published documents. The findings of the review will be disseminated in a related peer-reviewed journal and presented at conferences. They will also contribute to the work developed in the Real World Outcomes across the Alzheimer’s disease spectrum for better care: multimodal data access platform (ROADMAP)

    Broken R Parity Contributions to Flavor Changing Rates and CP Asymmetries in Fermion Pair Production at Leptonic Colliders

    Get PDF
    We examine the effects of the R parity odd renormalizable interactions on flavor changing rates and CP violation asymmetries in the production of fermion-antifermion pairs at ee+e^-- e^+ leptonic colliders. The produced fermions may be leptons, down-quarks or up-quarks, and the center of mass energies may range from the Z-boson pole up to 1000 1000 GeV. Off the Z-boson pole, the flavor changing rates are controlled by tree level amplitudes and the CP asymmetries by interference terms between tree and loop level amplitudes. At the Z-boson pole, both observables involve loop amplitudes. The lepton number violating interactions, associated with the coupling constants, \l_{ijk}, \l'_{ijk}, are only taken into account. The consideration of loop amplitudes is restricted to the photon and Z-boson vertex corrections. We briefly review flavor violation physics at colliders. We present numerical results using a single, species and family independent, mass parameter, m~\tilde m, for all the scalar superpartners and considering simple assumptions for the family dependence of the R parity odd coupling constants.Comment: Latex File. 23 pages. 4 postscript figures. 1 table. Revised version with new results and several corrections in numerical result

    Landscapes of Urbanization and De-Urbanization: A Large-Scale Approach to Investigating the Indus Civilization's Settlement Distributions in Northwest India.

    Get PDF
    Survey data play a fundamental role in studies of social complexity. Integrating the results from multiple projects into large-scale analyses encourages the reconsideration of existing interpretations. This approach is essential to understanding changes in the Indus Civilization's settlement distributions (ca. 2600-1600 b.c.), which shift from numerous small-scale settlements and a small number of larger urban centers to a de-nucleated pattern of settlement. This paper examines the interpretation that northwest India's settlement density increased as Indus cities declined by developing an integrated site location database and using this pilot database to conduct large-scale geographical information systems (GIS) analyses. It finds that settlement density in northwestern India may have increased in particular areas after ca. 1900 b.c., and that the resulting landscape of de-urbanization may have emerged at the expense of other processes. Investigating the Indus Civilization's landscapes has the potential to reveal broader dynamics of social complexity across extensive and varied environments.ER

    Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile

    Get PDF
    A recent genome-wide association study identified hepatocyte nuclear factor 1-α (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MODY) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCK)-MODY (n = 118), hepatocyte nuclear factor 4-α (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic ≥ 0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction

    Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond

    Get PDF
    2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe
    corecore