620 research outputs found

    Depletion of density of states near Fermi energy induced by disorder and electron correlation in alloys

    Full text link
    We have performed high resolution photoemission study of substitutionally disordered alloys Cu-Pt, Cu-Pd, Cu-Ni, and Pd-Pt. The ratios between alloy spectra and pure metal spectra are found to have dips at the Fermi level when the residual resistivity is high and when rather strong repulsive electron-electron interaction is expected. This is in accordance with Altshuler and Aronov's model which predicts depletion of density of states at the Fermi level when both disorder and electron correlation are present.Comment: 1 tex file and 4 ps file

    Resonant Auger spectroscopy at the L2,3 shake-up thresholds as a probe of electron correlation effects in nickel

    Full text link
    The excitation energy dependence of the three-hole satellites in the L3-M4,5M4,5 and L2-M4,5M4,5 Auger spectra of nickel metal has been measured using synchrotron radiation. The satellite behavior in the non-radiative emission spectra at the L3 and L2 thresholds is compared and the influence of the Coster-Kronig channel explored. The three-hole satellite intensity at the L3 Auger emission line reveals a peak structure at 5 eV above the L3 threshold attributed to resonant processes at the 2p53d9 shake-up threshold. This is discussed in connection with the 6-eV feature in the x-ray absorption spectrum.Comment: 8 pages, 4 figures; http://prb.aps.org/abstract/PRB/v58/i7/p3677_

    Performance Bounds of Model Predictive Control for Unconstrained and Constrained Linear Quadratic Problems and Beyond

    Full text link
    We study unconstrained and constrained linear quadratic problems and investigate the suboptimality of the model predictive control (MPC) method applied to such problems. Considering MPC as an approximate scheme for solving the related fixed point equations, we derive performance bounds for the closed-loop system under MPC. Our analysis, as well as numerical examples, suggests new ways of choosing the terminal cost and terminal constraints, which are \emph{not} related to the solution of the Riccati equation of the original problem. The resulting method can have a larger feasible region, and cause hardly any loss of performance in terms of the closed-loop cost over an infinite horizon

    Isotope shift in the electron affinity of chlorine

    Full text link
    The specific mass shift in the electron affinity between ^{35}Cl and ^{37}Cl has been determined by tunable laser photodetachment spectroscopy to be -0.51(14) GHz. The isotope shift was observed as a difference in the onset of the photodetachment process for the two isotopes. In addition, the electron affinity of Cl was found to be 29138.59(22) cm^{-1}, giving a factor of 2 improvement in the accuracy over earlier measurements. Many-body calculations including lowest-order correlation effects demonstrates the sensitivity of the specific mass shift and show that the inclusion of higher-order correlation effects would be necessary for a quantitative description.Comment: 16 pages, 6 figures, LaTeX2e, amsmat

    Multiagent Rollout with Reshuffling for Warehouse Robots Path Planning

    Full text link
    Efficiently solving path planning problems for a large number of robots is critical to the successful operation of modern warehouses. The existing approaches adopt classical shortest path algorithms to plan in environments whose cells are associated with both space and time in order to avoid collision between robots. In this work, we achieve the same goal by means of simulation in a smaller static environment. Built upon the new framework introduced in (Bertsekas, 2021a), we propose multiagent rollout with reshuffling algorithm, and apply it to address the warehouse robots path planning problem. The proposed scheme has a solid theoretical guarantee and exhibits consistent performance in our numerical studies. Moreover, it inherits from the generic rollout methods the ability to adapt to a changing environment by online replanning, which we demonstrate through examples where some robots malfunction

    Evaluating research: A multidisciplinary approach to assessing research practice and quality

    Get PDF
    AbstractThere are few widely acknowledged quality standards for research practice, and few definitions of what constitutes good research. The overall aim was therefore to describe what constitutes research, and then to use this description to develop a model of research practice and to define concepts related to its quality. The primary objective was to explore such a model and to create a multidisciplinary understanding of the generic dimensions of the quality of research practice. Eight concept modelling working seminars were conducted. A graphic representation of concepts and their relationships was developed to bridge the gap between different disciplines. A concept model of research as a phenomenon was created, which included a total of 18 defined concepts and their relationships. In a second phase four main areas were distilled, describing research practice in a multidisciplinary context: Credible, Contributory, Communicable, and Conforming. Each of these was further specified in a concept hierarchy together with a defined terminology. A comprehensive quality model including 32 concepts, based on the four main areas, was developed for describing quality issues of research practice, where the model of research as a phenomenon was used to define the quality concepts. The quality model may be used for further development of elements, weights and operationalizations related to the quality of research practice in different academic fields

    Correction of non-linearity effects in detectors for electron spectroscopy

    Full text link
    Using photoemission intensities and a detection system employed by many groups in the electron spectroscopy community as an example, we have quantitatively characterized and corrected detector non-linearity effects over the full dynamic range of the system. Non-linearity effects are found to be important whenever measuring relative peak intensities accurately is important, even in the low-countrate regime. This includes, for example, performing quantitative analyses for surface contaminants or sample bulk stoichiometries, where the peak intensities involved can differ by one or two orders of magnitude, and thus could occupy a significant portion of the detector dynamic range. Two successful procedures for correcting non-linearity effects are presented. The first one yields directly the detector efficiency by measuring a flat-background reference intensity as a function of incident x-ray flux, while the second one determines the detector response from a least-squares analysis of broad-scan survey spectra at different incident x-ray fluxes. Although we have used one spectrometer and detection system as an example, these methodologies should be useful for many other cases.Comment: 13 pages, 12 figure
    • 

    corecore