403 research outputs found

    Theory of electrostatically induced shape transitions in carbon nanotubes

    Full text link
    A mechanically bistable single-walled carbon nanotube can act as a variable-shaped capacitor with a voltage-controlled transition between collapsed and inflated states. This external control parameter provides a means to tune the system so that collapsed and inflated states are degenerate, at which point the tube's susceptibility to diverse external stimuli-- temperature, voltage, trapped atoms -- diverges following a universal curve, yielding an exceptionally sensitive sensor or actuator that is characterized by a vanishing energy scale. For example, the boundary between collapsed and inflated states can shift hundreds of Angstroms in response to the presence or absence of a single gas atom in the core of the tube. Several potential nano-electromechanical devices can be based on this electrically tuned crossover between near-degenerate collapsed and inflated configurations

    Attracted Diffusion-Limited Aggregation

    Full text link
    In this paper, we present results of extensive Monte Carlo simulations of diffusion-limited aggregation (DLA) with a seed placed on an attractive plane as a simple model in connection with the electrical double layers. We compute the fractal dimension of the aggregated patterns as a function of the attraction strength \alpha. For the patterns grown in both two and three dimensions, the fractal dimension shows a significant dependence on the attraction strength for small values of \alpha, and approaches to that of the ordinary two-dimensional (2D) DLA in the limit of large \alpha. For non-attracting case with \alpha=1, our results in three dimensions reproduce the patterns of 3D ordinary DLA, while in two dimensions our model leads to formation of a compact cluster with dimension two. For intermediate \alpha, the 3D clusters have quasi-2D structure with a fractal dimension very close to that of the ordinary 2D-DLA. This allows one to control morphology of a growing cluster by tuning a single external parameter \alpha.Comment: 6 pages, 6 figures, to appear in Phys. Rev. E (2012

    Universality of collapsing two-dimensional self-avoiding trails

    Full text link
    Results of a numerically exact transfer matrix calculation for the model of Interacting Self-Avoiding Trails are presented. The results lead to the conclusion that, at the collapse transition, Self-Avoiding Trails are in the same universality class as the O(n=0) model of Blote and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν=12/23\nu=12/23, contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9 pages; 3 figure

    Effects of patch size and number within a simple model of patchy colloids

    Get PDF
    We report on a computer simulation and integral equation study of a simple model of patchy spheres, each of whose surfaces is decorated with two opposite attractive caps, as a function of the fraction χ\chi of covered attractive surface. The simple model explored --- the two-patch Kern-Frenkel model --- interpolates between a square-well and a hard-sphere potential on changing the coverage χ\chi. We show that integral equation theory provides quantitative predictions in the entire explored region of temperatures and densities from the square-well limit χ=1.0\chi = 1.0 down to χ0.6\chi \approx 0.6. For smaller χ\chi, good numerical convergence of the equations is achieved only at temperatures larger than the gas-liquid critical point, where however integral equation theory provides a complete description of the angular dependence. These results are contrasted with those for the one-patch case. We investigate the remaining region of coverage via numerical simulation and show how the gas-liquid critical point moves to smaller densities and temperatures on decreasing χ\chi. Below χ0.3\chi \approx 0.3, crystallization prevents the possibility of observing the evolution of the line of critical points, providing the angular analog of the disappearance of the liquid as an equilibrium phase on decreasing the range for spherical potentials. Finally, we show that the stable ordered phase evolves on decreasing χ\chi from a three-dimensional crystal of interconnected planes to a two-dimensional independent-planes structure to a one-dimensional fluid of chains when the one-bond-per-patch limit is eventually reached.Comment: 26 pages, 11 figures, J. Chem. Phys. in pres

    Surface critical behaviour of the Interacting Self-Avoiding Trail on the square lattice

    Full text link
    The surface critical behaviour of the interacting self-avoiding trail is examined using transfer matrix methods coupled with finite-size scaling. Particular attention is paid to the critical exponents at the ordinary and special points along the collapse transition line. The phase diagram is also presented.Comment: Journal of Physics A (accepted

    Exact Multifractal Spectra for Arbitrary Laplacian Random Walks

    Full text link
    Iterated conformal mappings are used to obtain exact multifractal spectra of the harmonic measure for arbitrary Laplacian random walks in two dimensions. Separate spectra are found to describe scaling of the growth measure in time, of the measure near the growth tip, and of the measure away from the growth tip. The spectra away from the tip coincide with those of conformally invariant equilibrium systems with arbitrary central charge c1c\leq 1, with cc related to the particular walk chosen, while the scaling in time and near the tip cannot be obtained from the equilibrium properties.Comment: 4 pages, 3 figures; references added, minor correction

    Stochastic series expansion method with operator-loop update

    Full text link
    A cluster update (the ``operator-loop'') is developed within the framework of a numerically exact quantum Monte Carlo method based on the power series expansion of exp(-BH) (stochastic series expansion). The method is generally applicable to a wide class of lattice Hamiltonians for which the expansion is positive definite. For some important models the operator-loop algorithm is more efficient than loop updates previously developed for ``worldline'' simulations. The method is here tested on a two-dimensional anisotropic Heisenberg antiferromagnet in a magnetic field.Comment: 5 pages, 4 figure

    Roughness of Crack Interfaces in Two-Dimensional Beam Lattices

    Full text link
    The roughness of crack interfaces is reported in quasistatic fracture, using an elastic network of beams with random breaking thresholds. For strong disorders we obtain 0.86(3) for the roughness exponent, a result which is very different from the minimum energy surface exponent, i.e., the value 2/3. A cross-over to lower values is observed as the disorder is reduced, the exponent in these cases being strongly dependent on the disorder.Comment: 9 pages, RevTeX, 3 figure

    Statistics of self-avoiding walks on randomly diluted lattice

    Full text link
    A comprehensive numerical study of self-avoiding walks (SAW's) on randomly diluted lattices in two and three dimensions is carried out. The critical exponents ν\nu and χ\chi are calculated for various different occupation probabilities, disorder configuration ensembles, and walk weighting schemes. These results are analyzed and compared with those previously available. Various subtleties in the calculation and definition of these exponents are discussed. Precise numerical values are given for these exponents in most cases, and many new properties are recognized for them.Comment: 34 pages (+ 12 figures), REVTEX 3.
    corecore