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Abstract

Derjaguin’s approximation provides the electrical-double-layer interaction force between two ar-

bitrary convex surfaces as the product of the corresponding one-dimensional parallel-plate interac-

tion potential and an effective radius R (function of the radii of curvature and relative orientation

of the two surfaces at minimum separation). The approximation holds when both the Debye

length 1/κ and minimum separation h are small compared to R. We show here that a simple

transformation,

R⇒ [R]

√
[K1][K2]

K1K2
,

yields an approximation uniformly valid for arbitrary separations h; here Ki is the Gaussian cur-

vature of particle i at minimum separation, and [ · ] is an operator which adds h/2 to all radii of

curvature present in the expression on which it acts. We derive this result in two steps. First,

we extend the two-dimensional ray-theory analysis of Schnitzer [Physical Review E, 91 022307

2015], valid for κh, κR � 1, to three dimensions. Using this approach we obtain a general closed

form expression for the force by matching nonlinear diffuse-charge boundary layers with a WKBJ

description of the bulk potential, and subsequent integration via Laplace’s method of the traction

over the medial surface generated by all spheres maximally inscribed between the two surfaces.

Second, we exploit the existence of an overlap domain, 1� κh� κR, where both the ray-theory

and the Derjaguin approximations hold, to systematically form the generalized mapping. The

validity of the result is demonstrated by comparison with numerical computations.
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I. INTRODUCTION

Interfaces between solid surfaces and electrolyte solutions are characterised by charge

separation [1], i.e. the formation of “electrical double layers” (EDL). The solid side sponta-

neously acquires surface charge, while on the electrolyte side a balance between electrostatic

forces and diffusion results in the formation of a screening ionic cloud (“diffuse-charge”, or

“Debye” layer), where counter-ions are in excess. Two basic quantities describe a diffuse-

charge layer: the (typically nano-metric) Debye length scale on which space-charge density

attenuates towards the electro-neutral bulk, and the zeta potential, the voltage drop across

the layer. EDL play a key role in numerous physical phenomena: They largely determine

the stability, and the effective conductive, optical and rheological properties, of particu-

late colloidal solutions and emulsions [2]; enable a wide variety of electrokinetic phenomena

with colloidal particles [1, 3], in micro-channels [4–6], and in porous medium [7]; affect cur-

rent passage in electrochemical configurations [8]; and are responsible for ion-selectivity of

nano-pore membranes and nano-channels [9].

A fundamental consequence of charge separation is the EDL interaction force acting

between two diffusely screened charged surfaces. In many scenarios even a slight diffuse-

layer overlap gives rise to a force which is appreciable, in the sense that it is comparable

with other forces present in the system [10]. For example, a balance with van der Waals

attraction regulates the stability of colloidal solutions to aggregation [11]; a balance with

gravity enables levitation of a micron-sized particle above an electrode [12, 13]; and a balance

with various coiling mechanisms determines the conformation of DNA molecules in solution

[14, 15]. EDL interactions are also important in various environmental applications such as

coal flotation [16], biological phenomena [17–20], and interpreting AFM measurements in

conducting liquids for imaging [21] or in fundamental surface-physics studies [22, 23].

There is a huge body of literature devoted to the theoretical modelling of EDL interac-

tions, both classic and contemporary. Many of these works are based on a continuum-level

description [largely the Poisson–Boltzmann (PB) formulation and generalisations thereof],

while others are based on more detailed descriptions such as density-functional theory and

molecular-dynamics simulations [24]. While the most tractable configuration for analysis and

computation is the one-dimensional parallel-plate system, all of the applications mentioned

in the preceding paragraph necessarily involve curved surfaces. For this reason, Derjaguin’s
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(or Deryagin’s) formula [11, 25, 26], which provides an approximate mapping from one to two

or three dimensions, has become the paramount theoretical tool for studying and predicting

the effects of EDL interactions [27, 28].

In mathematical terms, Derjaguin’s approximation provides the interaction force between

two arbitrarily shaped convex surfaces at minimum separation h∗ as (henceforth, all dimen-

sional quantities are decorated by an asterisk)

F ∗(h∗) ∼ 2πR∗
∫ ∞
h∗

Π∗(s∗)ds∗, (1)

where Π∗(h∗) is the force per unit area of the corresponding parallel plate system at separa-

tion h∗, and R∗ is the “effective radius”, a geometric factor depending only on the intrinsic

geometry of the surfaces near minimum separation; the force acts along the minimum-

distance line connecting the surfaces, with F ∗> 0 corresponding to a repulsive interaction.

For spheres of radii R∗1 and R∗2, the effective radius is

1

R∗
=

1

R∗1
+

1

R∗2
, (2)

while the generalisation to entirely arbitrary convex surfaces is [26]

1

R∗2
=

(
1

R∗11
+

1

R∗21

)(
1

R∗12
+

1

R∗22

)
+

(
1

R∗11
− 1

R∗12

)(
1

R∗21
− 1

R∗22

)
sin2 φ, (3)

where R∗ij denotes the principal radii of curvature j = 1, 2 of particle i = 1, 2, and φ is

the angle between the principal curvature bases, all evaluated at minimum separation. Der-

jaguin’s approximation is appropriate when both the gap separation h∗ and the Debye length

scale 1/κ∗ are small compared to the radii of curvature characterising the gap geometry, say

R∗ [26]. For later reference, Fig. 1 depicts this domain of validity in the parameter space

(κ∗R∗, κ∗h∗). In light of the condition h∗�R∗, Derjaguin’s mapping is also known as the

“proximity-force approximation”.

The long-standing availability of Derjaguin’s approximation has guided further theoretical

studies in two directions. The first is to improve our understanding of the one-dimensional

configuration, via modified ion-transport and surface-chemistry models, exact and approxi-

mate solutions to continuum equations, and comparison with highly detailed molecular-level

simulations. The second is to either improve on the approximation provided by Derjaguin’s

mapping or to go beyond its above-mentioned domain of validity; the present contribution

is of the latter type.
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FIG. 1: The transformation (4) extends the domain of validity of Derjaguin’s

approximation to all separations h∗, the only remaining condition being κ∗R∗ � 1. We

first derive a novel closed-form formula valid for κ∗h∗ � 1, building on the ray-theory

approach of Ref. 29. We then exploit the depicted overlap of this approximation with the

classical Derjaguin approximation towards forming a uniformly valid expression.

Rigorous treatments in two or three dimensions have been largely limited to idealised

geometries. These include “exact” numerical simulations of the nonlinear PB formulation

for identical and differing spheres [30–32], and numerical [33], analytic [34], and approximate

[35] solutions of the linearised PB equation limited to low potentials. An alternative ap-

proximate approach known as the superposition approximation is valid for κ∗h∗, κ∗R∗ � 1.

In that domain, the potential distribution is accurately given by superposing the distribu-

tions associated with isolated surfaces. This simplification gives rise to several schemes,

both numerical and analytical. In the low-voltage régime, the single-particle distributions

may be found analytically by solving the linear PB equation for ideal geometries, typically

spheres. Beyond low voltages, linear solutions of the latter type — now describing the al-

most electro-neutral bulk — may be joined with a one-dimensional solutions of the nonlinear

diffuse layers [36, 37]. As it stands, the superposition approximation relies on having exact

solutions to either the linear or nonlinear PB equation whereby a simple generalisation to

arbitrary geometries appears intractable.
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In this paper, we show that a surprisingly simple generalisation of Derjaguin’s approxi-

mation renders it uniformly valid for all separations h∗, the only remaining condition being

κ∗R∗ � 1. We find that, for arbitrary three dimensional convex surfaces, the requisite

generalisation is obtained by modifying the effective radius (3) according to the rule

R∗ ⇒ [R∗]∗

√
[K∗1 ]∗[K∗2 ]∗
K∗1K

∗
2

, (4)

where K∗1 and K∗2 are the Gaussian curvatures of the two surfaces at minimum separation,

and [·]∗ represents an operator which adds h∗/2 to all radii of curvatures. For example,

1/K∗1 = R∗11R
∗
12 becomes 1/[K∗1 ]∗ = (R∗11 + h∗/2)(R∗12 + h∗/2). For simplicity we shall derive

the above result in the familiar nonlinear PB framework appropriate for dilute electrolytes

(assuming a symmetric binary electrolyte). In §VI, however, we shall assert that (4) holds

for a more general class of models; this is consistent with the purely geometric form of the

generalisation.

We obtain this result in two steps. The first consists of analysing the nonlinear PB for-

mulation in the limit κ∗R∗ � 1 and κ∗h∗ � 1 (see Fig. 1). To this end, we extend the

ray-theory approach one of us recently put forward in two dimensions [29] to three dimen-

sions. In sharp contrast to the previous investigations of this limit [36, 37], the ray-theory

approach yields a simple closed-form approximation valid for arbitrary three-dimensional

convex surfaces. Thus instead of relying on exact solutions describing the bulk domain, the

ray approach employs a WKBJ ansatz for this domain. The latter expansion is determined

using analogies with ray-optics, and applying a rigorous matching condition with the non-

linear diffuse-charge boundary layers. But the crux of the method lies in the asymptotic

evaluation of the interaction force. The surface over which stress is integrated is deformed

to the “medial surface” generated by the centers of all spheres maximally inscribed between

the two surfaces; the stress decays exponentially over this surface, and this allows us to use

Laplace’s method to extract the leading-order force in simple analytic form. The remaining

step of the derivation relies on the observation that the validity régimes of the Derjaguin

and the new ray-theory approximations overlap (see Fig. 1). We exploit this towards sys-

tematically combining the two approximations.

The rest of this paper is structured as follows. In §II we formulate the problem of

calculating the EDL interaction force. Following Ref. 29, in §III we asymptotically address

the limit where κ∗R∗ and κ∗h∗ are both� 1; this yields a new closed-form approximation for
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arbitrary three-dimensional convex surfaces. In §IV we combine the latter with Derjaguin’s

approximation thereby obtaining a generalized Derjaguin approximation uniformly valid for

all separations h∗. In §V we compare the new formulae with numerical solutions of the

nonlinear PB formulation. Concluding remarks are given in §VI.

II. PROBLEM FORMULATION

Consider two convex particles of otherwise arbitrary shape, their boundaries separated

by a minimal distance h∗. The particles are suspended in an unbounded binary symmetric

electrolyte of valency ±Z, far-field concentration c∗, and dielectric constant ε∗. For sim-

plicity we shall refer to either of the following canonical surface-charge models. (i) “fixed

potential”: a voltage ϕ∗ψi is prescribed between the surface of particle i = 1, 2 and the

far-field potential. (ii) “fixed charge”: a uniform surface-charge density (ε∗κ∗ϕ∗)σi is pre-

scribed. As for the Derjaguin approximation, the results we shall derive hold under more

general charging conditions. We also disregard the electric displacement within the solids,

a negligible effect in the parameter domain we are concerned with (see §VI). It is assumed

that the positions and orientations of the particles are fixed, that the fluid is at rest, and that

the solid-electrolyte system is in a state of equilibrium. The ionic distributions are therefore

Boltzmann distributed. The goal outcome of the formulation below is the interaction force

acting on the particles.

Henceforth, we shall employ a dimensionless formulation where ionic concentrations are

normalized by c∗; potentials by the thermal voltage ϕ∗ = k∗T ∗/Ze∗, k∗T ∗ being the Boltz-

mann temperature and e∗ the electron-charge magnitude; lengths by a∗, a typical length-

scale characteristic of the particles; and pressure and stress by ε∗(ϕ∗/a∗)2. The corresponding

dimensionless ionic concentrations, electric potential, and hydrostatic pressure, are respec-

tively denoted by c±, ϕ, and p. The dimensionless minimal separation is denoted by

h =
h∗

a∗
, (5)

and the dimensionless Debye length is denoted by

δ =
1

κ∗a∗
, where κ∗2 =

2Ze∗c∗
ε∗ϕ∗

. (6)

Choosing ϕ to decay at large distances, and substituting Boltzmann’s distribution c± =
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e∓ϕ into Poisson’s equation, we find the nonlinear PB equation

δ2∇2ϕ = sinhϕ. (7)

As discussed above, on the particle boundaries (i = 1, 2) we have one of the two conditions

ϕ = ψi or
∂ϕ

∂n
= −δ−1σi, (8)

respectively corresponding to the cases of fixed potential or fixed charge.

Given ϕ, the force on particle i is found by integrating the stress on the particle boundary

Si. Thus the force (normalised by ε∗ϕ∗2) is provided by the integral

fi =

∮
Si

n̂ · T dA, (9)

where n̂ is the local outer normal to Si, and T is the dimensionless stress tensor,

T = −pI +∇ϕ∇ϕ− 1

2
|∇ϕ|2I, (10)

where I denotes the unity tensor. The stress tensor (10) combines a hydrostatic-pressure

contribution, and the electrical (Maxwell) stress tensor. The hydrostatic pressure distribu-

tion is determined in terms of ϕ from the mechanical equilibrium equation ∇p = ∇2ϕ∇ϕ.

Integrating the latter equation in conjunction with (7), and choosing the pressure to decay

at large distances, one finds

p = δ−2(coshϕ− 1). (11)

Note that mechanical equilibrium can equivalently be stated as ∇ · T = 0. Thus the forces

on the particles are equal in magnitude and opposite in sign, and the integration boundary

in (9) can be arbitrarily deformed outward from the particle boundary as long as it does not

intersect or encloses the second particle.

III. THE LIMIT δ � 1 AND δ � h: RAY-THEORY APPROACH

In this section we analyse the asymptotic limit where the Debye length is small compared

to both the separation and the characteristic particle size. In the dimensionless notation of

§II, these conditions read δ � 1 and δ � h. Note that we do not require h to be small.

Where possible, we shall follow the corresponding analysis of the simpler two-dimensional

problem presented in Ref. 29. We first consider the potential distribution around a single

isolated particle.
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A. Potential distribution about a single particle

1. Diffuse-charge boundary layer

In the singular thin-double-layer limit δ � 1, a thin diffuse-charge layer of thickness O(δ)

forms about the particle boundary. The leading-order boundary-layer solution of (7), in

conjunction with (8), and attenuation at distances � δ from the boundary, is well known

[38–40]. Expanding the potential in this domain as ϕ ∼ Ψ + O(δ), one finds (dropping the

i-subscript for now)

tanh
Ψ

4
= e−l/δ tanh

ζ

4
. (12)

Here l is the normal distance from the surface (here assumed O(δ)), and ζ is the ϕ∗-

normalised leading-order voltage across the layer. This solution is compatible with either of

the boundary conditions (8); ζ is asymptotic to the surface potential ψ, and related to the

surface charge σ by the Gouy–Chapman relation σ = 2 sinh(ζ/2). It is well known that this

solution is also compatible with more general “charge regulation”-type conditions [17, 41].

Thus in the present limit we may simply regard ζ as the prescribed surface property.

2. Bulk domain

The exponential decay of the Debye-scale potential,

Ψ ∼ 4e−l/δ tanh
ζ

4
as l/δ →∞, (13)

implies that the potential in the bulk domain (distances� δ from the particle boundary) is

exponentially small in δ. Hence, the bulk potential is governed by the linearized PB equation

δ2∇2ϕ ∼ ϕ. (14)

The form of Eq. (14) suggests expanding ϕ in the form of a WKBJ ansatz [42, 43]

ϕ ∼ [A(x) +O(δ)] e−u(x)/δ. (15)

From (13), asymptotic matching with the diffuse-charge layer requires that

u ∼ l, A ∼ 4 tanh
ζ

4
, (16)

as the particle boundary is approached (l� 1).
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Substitution of (15) into (14) yields at leading order the “eikonal” equation

|∇u|2 = 1, (17)

and at first order the “transport” equation

∇u · ∇A = −A
2
∇2u. (18)

Equations (17) and (18), in conjunction with the matching conditions (16), allow us to

sequentially calculate the “phase” u(x) and “amplitude” A(x). The solution for the phase

follows from a trivial application of Charpit’s method of characteristics [44], or just by

observation: u(x) = l, l being the minimum distance of x from the particle boundary.

Explicitly, if the particle boundary and outward normal are respectively parametrized as

x = xp(~s) and n̂p(~s), then a parametric representation of the solution is

u(~s, l) = l on x(~s, l) = xp(~s) + ln̂p(~s). (19)

We may say that at any given boundary point, a straight ray emanates in the direction of

the local outward normal (since the particle is convex and smooth, there is a unique ray

passing through any point x).

Consider next the amplitude A. Noting that ∇u = n̂p(~s), the transport equation (18)

can be written as

∇ ·
(
A2n̂p

)
= 0. (20)

Considering an infinitesimal tube of rays [45, 46], (20) implies that A2/k remains constant

along a ray, k being the Gaussian curvature of the constant-l ‘wave front’. This result is

entirely analogous to the light-intensity attenuation law of geometrical optics, from where

we borrowed the phase-amplitude jargon. Now, as l→ 0, the matching condition (16) yields

A→ 4 tanh(ζ/4), while the ray structure (19) implies that k → K, where

K(ρ1, ρ2) =
1

ρ1(~s)ρ2(~s)
(21)

is the local Gaussian curvature of the particle boundary, ρ1 and ρ2 being the corresponding

principal radii of curvature. It readily follows that

A(~s, l) = 4 tanh
ζ

4

√
K(ρ1(~s) + l, ρ2(~s) + l)

K(ρ1(~s), ρ2(~s))
. (22)
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B. Potential distribution in the bulk separating two particles

We return now to the original problem of two convex particles i = 1, 2, with the separation

satisfying h� δ. The superposition approximation is applicable in this limit: the potential

distribution is obtained by adding the distributions associated with each particle separately.

Specifically, in the bulk domain we add together two ray solutions of the form (15), the ray

and particle-boundary parameters of particle i being denoted as ~si, li, n̂pi, ρ1i, ρ2i, and ζi.

The bulk potential therefore reads

ϕ ∼ A1 (~s1, l1) e
−l1/δ + A2 (~s2, l2) e

−l2/δ, (23)

with [cf. (22)]

Ai(~si, li) = 4 tanh
ζi
4

√
K(ρi1(~si) + li, ρ2i(~si) + li)

K(ρi1(~si), ρi2(~si))
. (24)

It is clear that, in an asymptotic sense, the two solutions forming (23) separately satisfy

the bulk equation (14). Also, because of the exponential decay, rays emanating from one

particle do not interfere with matching at the edge of the diffuse-layer surrounding the

second particle. The overall structure of the solution is depicted in Fig. 2.

l2

l1

1
h

O(δ)

nonlinear 

diffuse-charge 

boundary layer

linear electro-neutral bulk

ϕ = O(1)

ϕ ≪ 1 ,  eq. (23)

,  eq. (12)

FIG. 2: Asymptotic structure of the potential distribution in the ray limit of §III.
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C. The interaction force

We shall now employ the parametric solution (23) towards calculating the interaction

force. To this end, we deform the integration surface in (9) outward from the particle

boundary into the bulk. In the latter domain, where the potential is exponentially small

in δ, we may expand the hydrostatic pressure (11) in powers of ϕ; the stress tensor (10)

becomes

T ∼∇ϕ∇ϕ−
(

1

2
|∇ϕ|2 +

1

2
ϕ2/δ2

)
I. (25)

We see from (25) that, while the contributions to the bulk potential “carried” by the

two families of rays superpose, the same does not apply for the bulk stress (25), which is

quadratic in the potential. When substituting (23) into (25), noting that

∇ϕ ∼ −δ−1
(
n̂p1A1e

−l1/δ + n̂p2A2e
−l2/δ

)
, (26)

we find three types of stress terms: (a) those associated with interaction of rays from par-

ticle 1 with rays from particles 2; (b & c) those associated with self interaction of the

rays from a single particle, either 1 or 2. Terms of type (a)–(c) are respectively of order

δ−2e−(l1+l2)/δ, δ−2e−2l1/δ, and δ−2e−2l2/δ, and so their magnitudes immensely vary with po-

sition, and their asymptotic hierarchy is spatially nonuniform. To overcome this apparent

difficulty, we further specify the integration surface in (9) so as to make all three estimates

comparable. Such a surface, for which l1 = l2, is provided by the so-called “medial” sur-

face generated by the centers of all spheres maximally inscribed between the two particle

boundaries, see Fig. 6. Clearly, for any given point on this surface, l1 = l2 = r, where r is

the radius of the inscribed sphere centered at that point. Indeed, on this special surface the

leading stress is

T ∼ δ−2e−2r/δ
{
−
[
A2

1 + A2
2 + (1 + n̂p1 · n̂p2)A1A2

]
I + A2

1n̂p1n̂p1+

A1A2 (n̂p1n̂p2 + n̂p2n̂p1) + A2
2n̂p2n̂p2

}
. (27)

Eq. (27) shows that on the medial surface stress exponentially decays away from the center

of the smallest maximally inscribed sphere (whose radius is h/2). This enables extracting

the dominant contribution to (9) via Laplace’s method of integration.

As a preliminary step, we grid the medial surface with orthogonal curvilinear coordinates
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ξ, η of unity metric, so that

êξ =
∂x

∂ξ
, êη =

∂x

∂η
(28)

are orthogonal unit vectors. We further specify that ξ, η = 0 coincides with the center of

the smallest maximally inscribed sphere, hence r(ξ = 0, η = 0) = h/2. As noted, the stress

(27) exponentially decays away from this center. The latter can be made explicit via the

expansion

r ∼ h

2
+

1

2

(
∂2r

∂ξ2

)
0

ξ2 +

(
∂2r

∂ξ∂η

)
0

ξη +
1

2

(
∂2r

∂η2

)
0

η2 + · · · , (29)

the 0-subscript denoting evaluation at ξ, η = 0. Expansion (29) makes use of the fact that

r is critical at ξ, η = 0. Since the latter extremum is a minimum, and hence not a saddle

point, the Hessian discriminant

∆2 =

(
∂2r

∂ξ2
∂2r

∂η2
− ∂2r

∂ξ∂η

)
0

(30)

is positive. (This discriminant is invariant to the particular orientation of êξ, êη at 0, which

we do not specify here.) In appendix C we study the medial surface near the point 0, finding

the purely geometric result

4∆2 =

(
1

R11 + h/2
+

1

R21 + h/2

)(
1

R12 + h/2
+

1

R22 + h/2

)
+

(
1

R11 + h/2
− 1

R12 + h/2

)(
1

R21 + h/2
− 1

R22 + h/2

)
sin2 φ, (31)

where Rij denotes the value of ρij at minimum separation. Note that Rij is the dimensionless

counterpart of R∗ij defined in the introduction (along with the orientation angle φ). On the

O(δ) scale, on which the exponential pre-factor in (27) decays, the remaining multiplicative

part of the force integrand n̂ · T remains approximately constant. Thus, for the latter part

we require only the limiting value at minimum separation. Considering for example the force

on particle 1, the outward normal n̂ to the integration surface is ∼ k̂, a unit vector parallel

to the line of minimal distance connecting particle 1 to 2. Similarly,

n̂p1 ∼ k̂, n̂p2 ∼ −k̂, (32)

and

Ai ∼ (Ai)0 = 4 tanh
ζi
4

√
K(Ri1 + h/2, Ri2 + h/2)

K(Ri1, Ri2)
. (33)
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We are now in the position of applying the two-dimensional version of Laplace’s method.

Substituting the above approximations into the integrand n̂·T, and performing the resulting

two-dimensional Gaussian quadrature [see Eq. (8.3.52) of Ref. 47], we find

f1 ∼
∫

n̂ · T dξdη ∼ −2πk̂
(A1)0 (A2)0

∆
δ−1e−h/δ. (34)

We can simplify this result by noting that 2∆ = 1/[R], where R denotes the effective

Derjaguin radius (3) normalised by the characteristic length a∗, and [·] is the operator of

adding h/2 to all radii of curvature. Thus, the magnitude of the leading-order interaction

force acting along the minimum-distance line between the particles reads

F ∼ 64π tanh
ζ1
4

tanh
ζ2
4

[R]

√
[K1][K2]

K1K2

δ−1e−h/δ, (35)

with Ki = K(Ri1, Ri2), and with F > 0 corresponding to a repulsive force.

IV. GENERALIZED DERJAGUIN APPROXIMATION

The new closed-form approximation (35) is asymptotic in the limit δ � 1, h. As outlined

in the introduction, the latter domain of validity overlaps with that of the classical Derjaguin

approximation, which is δ, h � 1 (see Fig. 1). This suggests forming a uniformly valid

approximation that is valid for all separations h (as long as δ � 1); the form of the new

uniform approximation turns out to be remarkably simple.

In our dimensionless notation, Derjaguin’s mapping (1) becomes

F ∼ 2πR

∫ ∞
h

Π(h′) dh′. (36)

To make the paper self-contained, we derive this well-established formula in appendix C,

along with the effectively one-dimensional problem governing Π; we also give some of the

standard approximations for Π valid under various circumstances. Our derivation may

appear different from the usual energy-based arguments [48], and it shows how (36) arises

naturally from a field description in the appropriate asymptotic limit.

In the overlap domain, where δ � h, Π may be approximated by (B14). Derjaguin’s

mapping (36) then yields the closed-form approximation

F ∼ 64πR tanh
ζ1
4

tanh
ζ2
4
δ−1e−h/δ, (37)
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which is quite often employed in practice due to its simplicity. Unsurprisingly, this is con-

sistent with the h � 1 limit of (35). All we need is a generalisation of (36) such that it

remains the same for δ, h � 1, but degenerates in the limit δ � h to (35) instead of (37).

Evidently, the required generalisation of (36) is

F ∼ 2π[R]

√
[K1][K2]

K1K2

∫ ∞
h

Π(h′) dh′, (38)

which corresponds to the dimensional transformation (4) stated in the introduction. For

later reference we note that, in the special case of two spheres (Ri1 = Ri2 = Ri), the

generalized Derjaguin radius simplifies to

two spheres: [R]

√
[K1][K2]

K1K2

=
R1R2

R1 +R2 + h
. (39)

V. COMPARISON WITH NUMERICAL SOLUTIONS

In this section we compare the new ray-theory approximation (35) and the generalized

Derjaguin approximation (38) to numerical solutions of the nonlinear PB formulation of §II.
Following the methods of Refs. 30–32, we obtain numerical solutions for pairs of non-identical

spheres by discretising the governing equation and boundary conditions using second-order

finite-differences in a bi-spherical coordinate system, and solving the resulting set of non-

linear algebraic equations by means of a Newton-Raphson method. The interaction force is

then obtained by discretising (9).

Figures 3 (fixed-charge conditions) and 4 (fixed-potential conditions) show results for

pairs of non-identical spheres. We choose the characteristic length a∗ to be the radius of

particle 1, and consider the case R1 = 1 and R2 = 2. The normalised surface properties are

taken as (σ1 = 3, σ2 = 1) in the fixed-charge case, and (ψ1 = 3, ψ2 = 1) in the fixed-potential

case. The dimensionless Debye length is taken to be δ = 0.05. We plot the interaction force

F divided by the scaling δ−1e−h/δ; we show the numerical solution (symbols), Eq. (36) — the

classical Derjaguin approximation (dashed line), Eq. (35) — the new closed-form ray-theory

approximation (dashed-dot line), and Eq. (38) the generalized uniformly valid Derjaguin

approximation (solid lines). It is seen that the ray approximation (35) is highly accurate

when the separation is just two or three times the Debye thickness, and that the uniform

approximation is highly accurate at all separations. In order to draw the Derjaguin approx-

imation, the one-dimensional problem governing Π was solved without approximation (see
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FIG. 3: Scaled interaction force as a function of dimensionless separation h between a pair

of fixed-charge spheres of dimensionless radii R1 = 1, R2 = 2, surface charge σ1 = 3, σ2 = 1,

and dimensionless Debye thickness δ = 0.05. For details on the numerical solution and the

various approximations depicted, see §V.

appendice §B). We note that the popular formula (37), visibly corresponding in the figures

to the straight asymptote of the classical Derjaguin approximation, is strictly speaking only

valid for δ � h� 1, a very narrow domain.

The ray approximation (35) asymptotes to the “exact” interaction force as δ → 0, as

long as h� δ. To demonstrate this, we plot in Fig. 5 the ray approximation vs. numerical

solutions for δ = 0.2, 0.1 and 0.05. For this figure, we consider two spheres having the same

radius, with σ1 = 0.5 and σ2 = 2. To avoid clutter, the classical and generalized Derjaguin

approximations are not shown.

VI. CONCLUDING REMARKS

The generalized “effective radius” (4) extends Derjaguin’s approximation to all inter-

particle separations. Our derivation allows for arbitrary three-dimensional convex surfaces.

Since it is also not limited to small potentials relative to the thermal voltage, the single

remaining condition is that the Debye length be small compared to characteristic particle

size. A well known property of Derjaguin’s approximation is that it depends only on prop-

erties of the surfaces at minimum separation. Somewhat surprisingly, we find that this is

15



also the case beyond close proximity — this is a consequence of the exponential nature of

EDL interactions. We find it remarkable that notwithstanding the increased generality, the

new uniformly valid approximation (38) retains the form of Derjaguin’s approximation (36),

coming at almost no cost with respect to complexity.

Our main effort has been to derive the new closed-form approximation (35) in the limit

where the Debye length is small compared to both the separation and the characteristic

particle size. The generalized Derjaguin mapping then emerged naturally by noting the

overlap in the domains of validity of the classical Derjaguin approximation and the new

closed-form approximation. Our analysis builds on the ray-theory approach put forward in

Ref. 29 within the context of planar geometries. A subtle point is that the two-dimensional

ray-theory analysis is not included in the present three-dimensional one. This is because the

stress in Ref. 29 is localised about a line, while here it is localised about a point; crucially,

this leads to a different scaling of the interaction force with δ.

The interaction force is asymptotically small in the domain of validity of the ray ap-

proximation (35). The latter domain is also where the new uniform approximation (38)

improves on the classical Derjaguin approximation (36). The importance of the interac-

tion at a given separation, however, is not judged in comparison with its magnitude at a

hypothetical smaller separation. The question, rather, is how big are the other forces in

a given physical scenario? As mentioned in the introduction, it is often the case that the

separation — although determined by a balance between EDL and, e.g., gravity or van der

h
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FIG. 4: Same as Fig. 3 but for fixed-potential spheres, with ψ1 = 3 and ψ2 = 1.
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Waals forces — is several times the Debye length. In that domain, the relative difference

between the classical and generalised Derjaguin approximation is O(1). Admittedly, while

Derjaguin’s classical approximation is not asymptotically valid at these separations, it pro-

vides an approximation which is probably sufficiently accurate from a practical point of

view.

Our results hold if one of the particles is replaced by a plane wall. Note however that

then the dependence of the effective radius on h vanishes, and our result coincides with

the classical Derjaguin approximation. The fortuitous improved accuracy of Derjaguin’s

approximation for the particle-plane configuration was found also in the two-dimensional

case [29], and in previous numerical simulations [31]. We also note that our results remain

applicable even if the zeta potential varies on the characteristic particle scale [29]. In (23),

the amplitudes Ai would depend on ~si not only through surface geometry, but also through

ζi(~si). The result for the leading-order force (35), however, would remain the same, with

ζi evaluated at minimum separation. Further clarification is due regarding our ab initio

neglect of the electric field within the solid particles. This is valid (except for particles with

an exceptionally large dielectric constant) because all of our results pertain to the limit

δ � 1 where the electric displacement in the Debye layers is O(1/δ) compared to that in

h
0 0.1 0.2 0.3 0.4 0.5 0.6

δ
eh

/
δ
F

2
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8

10

12

14

16

δ = 0.1

δ = 0.05

δ = 0.2

FIG. 5: Convergence of the ray approximation (35) (blue line) to numerical solutions

(symbols) as δ → 0, under the condition h� δ. The results shown are for a pair of spheres

of equal radius (R1 = R2 = 1), and fixed charge conditions (σ1 = 0.5, σ2 = 2).
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the solids.

Our extension to Derjaguin’s approximation relies on a continuum-level description,

specifically the nonlinear PB model for a dilute binary symmetric electrolyte. The PB

formulation has proved successful in describing simple scenarios, including those involving

multivalent electrolytes [49] (it would be fairly straightforward to generalize our analysis

to this case). Nevertheless, there are many studies aimed at providing more detailed de-

scriptions [50–52], either via molecular-dynamics simulations, density functional theory, or

various modified continuum descriptions. The latter models attempt to take into account

non-ideal characteristics of the electrolyte solution, such as steric effects and ion-ion elec-

trostatic correlations. Clearly, those which degenerate to the linear PB equation in the

bulk [53] would be amenable to our ray-theory approach. Indeed, the modification to the

bulk potential would enter only through the value of the amplitude A obtained from match-

ing [cf. (16)]; since this modification would be anyway captured by the one-dimensional Π

function the generalized Derjaguin approximation (38) would hold as is. Otherwise, our

ray-approach would have to be modified. This is certain with respect to recent models of

highly concentrated electrolytes and room-temperature ionic liquids [54–57]. Even in the

bulk, or for low potentials, these involve a fourth-order PDE, in some cases predicting an

oscillating exponential attenuation of the diffuse-layer potential.

Finally, it is well known that Derjaguin’s close-proximity approximation is not uniquely

applicable to EDL interactions. In fact, it is employed on a regular basis to study many

other surface-surface interactions, such as van der Waals and depletion forces. Beyond close

proximity, the general requirement is for the relevant interaction length scale to be� R∗. In

contrast, our generalisation of Derjaguin’s mapping to arbitrary separations strongly relies

on the exponential decay of the EDL interaction, and hence it might only be possible to adopt

it to other exponential interactions (e.g. nuclear forces, or opto-mechanical configurations

involving evanescent waves). Clearly, a comparable generalization for algebraically decaying

interactions, if at all possible, would necessarily involve also surface properties away from

minimum separation.
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Appendix A: Local system of coordinates

We describe here a cartesian coordinate system (x, y, z), with unit vectors (êx, êy, êz),

that will be used in the next two appendices (as in the text, lengths are normalised by

the reference scale a∗). We place the origin at the middle of the minimum-length (= h)

line segment connecting the particle boundaries, with the unit vector êz pointing towards

‘surface 1’ along this line, see Fig. 6. By construction, the tangent planes at the points

of contact of the z axis and the two boundaries are both parallel to the x−y plane; thus

locally the two surfaces are described by osculating paraboloids with êz as their common

axis. To fully specify the system, we orient êx and êy such that they respectively point in

the directions of the maximum and minimum curvature lines of the osculating paraboloid

of boundary 1.

It follows that, to second order in x and y, surfaces 1 and 2 respectively read

g1(x, y) ∼ h

2
+

x2

2R11

+
y2

2R12

+ · · · , g2(x, y) ∼ −h
2
− x′2

2R21

− y′2

2R22

+ · · · , (A1)

where

x′ = x cosφ+ y sinφ, y′ = −x sinφ+ y cosφ, (A2)

φ denoting the angle in the x−y plane between the principal curvature bases of the two oscu-

lating paraboloids. In constructing the (classical) Derjaguin approximation, the difference

between the two surfaces is the geometrically important quantity. Clearly this difference is,

locally, also a paraboloid about the z axis. In a coordinate system (x́, ý, z) aligned with the

principal basis of the latter paraboloid, it can be locally approximated as

g1 − g2 ∼ h+
λ1
2
x́2 +

λ2
2
ý2 + · · · , (A3)

with the constants λ1, λ2 satisfying the relation [26]

λ1λ2 =

(
1

R11

+
1

R21

)(
1

R12

+
1

R22

)
+

(
1

R11

− 1

R12

)(
1

R21

− 1

R22

)
sin2 φ; (A4)

this expression can be identified as 1/R2, where R = R∗/a∗ is the normalised effective

Derjaguin radius [cf. (3)].
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FIG. 6: Local coordinate system referred to in appendices A–C. Also shown is one of the

maximally inscribed spheres whose center lies on the medial integration surface.

Appendix B: The limit δ, h� 1 with h ∼ O(δ): Derjaguin’s approximation

We consider the gap region using the stretched “difference” coordinates [cf. (A3)],

X = x́/h1/2, Y = ý/h1/2, Z = z/h, (B1)

whereby surfaces 1 and 2 may be respectively approximated as

Z ∼ G1(X, Y ) +O(h), Z ∼ G2(X, Y ) +O(h); (B2)

we shall only make use of the difference G1 −G2, which is

D(X, Y ) = 1 +
λ1
2
X2 +

λ2
2
Y 2. (B3)

With the above scalings, together with the potential expansion ϕ ∼ Φ + O(h), we find

from (7) the leading-order equation

δ2

h2
∂2Φ

∂Z2
= sinh Φ, (B4)

and from (8) the supplementary conditions

Φ = ψ1 or
δ

h

∂Φ

∂Z
= σ1 at Z = G1(X, Y ) (B5)

and

Φ = ψ2 or
δ

h

∂Φ

∂Z
= −σ2 at Z = G2(X, Y ). (B6)
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The stress tensor (10) is, to leading order,

T ∼ −êzêzΠ̃(D), (B7)

where

Π̃(D) =
1

δ2
(cosh Φ− 1)− 1

2h2

(
∂Φ

∂Z

)2

(B8)

is, from (B4), independent of Z, and depends on X, Y only through the separation D.

Thanks to the fast decay of Π̃(D) with growing D, the magnitude of the leading interaction

force (9) is

F ∼ h

∫ ∞
−∞

∫ ∞
−∞

Π̃(D) dX dY ; (B9)

this force is directed in the êz direction (F > 0 corresponds to a repulsive force). Following

White [26], an obvious change of integration variables yields

F ∼ 2πh√
λ1λ2

∫ ∞
1

Π̃(D) dD. (B10)

Reverting to unscaled coordinates by defining Π(x) = Π̃(x/h), and recalling (A4), we find

Derjaguin’s approximation in dimensionless form:

F ∼ 2πR

∫ ∞
h

Π(h′) dh′. (B11)

Noting that Π(h) = Π̃(1), to determine Π(h) one simply needs to solve (B4), with the

boundary conditions (B5) and (B6) applied at Z = 1 and Z = 0, respectively; the de-

pendence on the factor h/δ enters through its appearance as a parameter in (B4). Exact

solutions can be obtained in terms of special functions [58, 59], or numerically. There are

also several approximations which are often employed [60]. For example, at low voltages

with fixed-potential conditions, one finds

Π(h) ∼ ψ2
1 + ψ2

2

2δ2 sinh2(h/δ)

[
2ψ1ψ2

ψ2
1 + ψ2

2

cosh(h/δ)− 1

]
. (B12)

while for fixed-charge conditions,

Π(h) ∼ σ2
1 + σ2

2

2δ2 sinh2(h/δ)

[
2σ1σ2
σ2
1 + σ2

2

cosh(h/δ) + 1

]
. (B13)

At large separations compared with the Debye length, δ � h, the above two expressions

asymptotically coincide. At those separations, however, we have the generic thin-double-

layer approximation

Π(h) ∼ 32δ−2 tanh
ζ1
4

tanh
ζ2
4
e−h/δ, (B14)

which is not limited to low potentials. In (B14), ζi is ψi in the fixed-potential case, or

determined from σi = 2 sinh(ζi/2) in the fixed-charge case.
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Appendix C: The Hessian discriminant ∆ of the radius function r(ξ, η)

We here set out to calculate the Hessian discriminant ∆ defined in (30) as a function of

the geometry of the two surfaces and the separation h. From (29) we infer that to calculate

∆ it is sufficient to determine the distribution of the inscribed-sphere radius r to second

order with respect to distances from the center of the smallest inscribed sphere.

We start by considering an arbitrarily chosen maximally inscribed sphere that is tangent

to surface 1 at {x1, y1, g1(x1, y1)}, and to surface 2 at {x2, y2, g2(x2, y2)} [see §A and fig. 6].

For the present, let us consider the coordinate pairs (x2, y2), and the center of the latter

inscribed sphere xm along with its radius r, as functions of the pair (x1, y1); the required

connection of this pair with the surface coordinates (ξ, η) introduced in §III C will be made

later. In particular, we define the functions

x2 = x2(x1, y1), y2 = y2(x1, y1), r(ξ, η) = r̃(x1, y1), xm(ξ, η) = x̃m(x1, y1), (C1)

which may in principal be determined from the vector relations defining the medial surface:

x̃m(x1, y1) = x1êx + y1êy + g1(x1, y1)êz + r̃(x1, y1)n̂p1(x1, y1)

= x2êx + y2êy + g2(x2, y2)êz + r̃(x1, y1)n̂p2(x2, y2). (C2)

We solve (C2) only up to orders in (x1, y1) needed for the exact calculation of ∆. To this

end, we substitute into (C2) expansions (A1), the associated expansions for the boundary

normal vectors n̂p1 and n̂p2, and the Taylor-series expansion

r̃(x1, y1) ∼
h

2
+

1

2

(
∂2r̃

∂x21

)
0

x21 +

(
∂2r̃

∂x1∂y1

)
0

x1y1 +
1

2

(
∂2r̃

∂y21

)
0

y21 + · · · . (C3)

We next consider the êx, êy components of the second equality in (C2). Comparing terms

to first order yields (x2, y2) to leading order in (x1, y1). The êz component, which is non-

trivial only at second order, then yields the second-order coefficients in expansion (C3). The

resulting expressions are lengthy and are not given here.

The last and final step is to connect the second-order partial derivatives of r with respect

to (x1, y1) appearing in (C3) and those with respect to the surface coordinates (ξ, η) appear-

ing in (29). This is performed by applying the chain rule; since r attains its minimum h/2

at the origin, we require only the first-order partial derivatives relating (x1, y1) and (ξ, η).

We find these by noting that the osculating paraboloid of the medial surface at the origin is
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tangent to the x−y plane, and hence can be written as

xm(ξ, η) ∼ ξêx + ηêy +O(ξ2, η2, ξη); (C4)

without loss of generality, we make here a convenient ∆-invariant choice for the orientation

of êξ and êη at the origin. Comparing (C4) with the first equality in (C2), we find(
∂x1
∂ξ

)
0

=

(
1 +

h

2R11

)−1
,

(
∂y1
∂η

)
0

=

(
1 +

h

2R12

)−1
,

(
∂x1
∂η

)
0

,

(
∂y1
∂ξ

)
0

= 0. (C5)

Result (31) then follows.
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