31 research outputs found

    Potential range of impact of an ecological trap network: the case of timber stacks and the Rosalia longicorn

    Get PDF
    Although the negative impact of timber stacks on populations of saproxylic beetles is a well-known phenomenon, there is relatively little data concerning the scale of this impact and its spatial aspect. Beech timber stored in the vicinity of the forest can act as an ecological trap for the Rosalia longicorn (Rosalia alpina), so in this study we have attempted to determine the spatial range of the impact of a network of timber stacks. Timber stacks in the species’ range in the study area were listed and monitored during the adult emergence period in 2014–2016. Based on published data relating to the species’ dispersal capabilities, buffers of four radii (500, 1000, 1600, 3000 m) were delineated around the stacks and the calculated ranges of potential impact. The results show that the percentage of currently known localities of the Rosalia longicorn impacted by stacks varies from 19.7 to 81.6%, depending on the assumed impact radius. The percentage of forest influenced by timber stacks was 77% for the largest-radius buffer. The overall impact of the ecological trap network is accelerated by fragmentation of the impact-free area. It was also found that forests situated close to the timber stacks where the Rosalia longicorn was recorded were older and more homogeneous in age and species composition than those around stacks where the species was absent. Such results suggest that timber stacks act as an ecological trap in the source area of the local population

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    This is the final version. Available on open access from the American Association for the Advancement of Science via the DOI in this recordData and materials availability: Processed data and code used in the analysis are accessible from the Zenodo Repository: 10.5281/zenodo.6885455Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements.Bertarelli FoundationResearch EnglandMoore FoundationPackard FoundationInstituto Politecnico NacionalDarwin InitiativeGeorgia AquariumRolex Awards for EnterpriseWhitley Fund for Natur

    Intégration des coûts de fertilisation et d'amendements dans l'évaluation des bénéfices de récolte du bois énergie : étude de cas dans les hêtraies de l'est de la France

    No full text
    International audienceSubstituting renewable forms of energy for fossil fuels is a real challenge in developed countries and fuel wood will undoubtedly have an important role to play in forested areas. However, fuel wood harvesting may deplete nutrients in forest ecosystems and adversely affect site fertility in the long term. We compared the cost of compensatory fertilising and liming operations between whole-tree harvesting and traditional stem-only harvesting. We worked in beech (Fagus sylvatica L.) stands in eastern France and two site fertility classes (high and low). We used a growth model to calculate the nitrogen, calcium, potassium, magnesium and phosphorus contents of fine woody debris (FWD, diameter < 7 cm) and compared the benefits of selling this fine wood for energy to the cost of compensatory fertilising and liming. We showed that compensating and liming are more expensive than the profits derived from selling fine fuel wood, except when fuel wood prices rise considerably. This was mainly due to the high proportion of bark in FWD compared with other tree compartments. Indeed, bark is especially rich in nutrients such as nitrogen and phosphorus, which were the most costly nutrients to replace. Our study highlights the importance of considering the environmental costs of fuel wood production at the stand scale. Whenever fertilisation or liming is necessary, we recommend compensating at least for calcium and magnesium, two nutrients that account for a very small part of the costs. In any case, fertilisation should only be used if long-term site fertility has been compromised

    Evidence of fine-scale genetic structure for reef manta rays Mobula alfredi in New Caledonia

    No full text
    Our understanding of the genetic connectivity of manta ray populations and the drivers that shape genetic population structure is still limited. This information is crucial to identify the spatial boundaries of discrete populations and guide decisions on units to conserve. In this study, we used genome-wide single nucleotide polymorphisms (SNPs) to assess the genetic structure and diversity of reef manta rays Mobula alfredi at a local scale within New Caledonia and regionally in the western Pacific Ocean. We provide the first evidence of fine-scale genetic differentiation in M. alfredi, found between the 3 cleaning station aggregation sites in New Caledonia (n = 65 samples, N = 2676 SNPs, FST = 0.01, p < 0.0001). Furthermore, population structure was evident at the regional scale between individuals from New Caledonia (n = 73) and East Australia (n = 19) on the basis of genetic differentiation statistics (3619 SNPs, FST = 0.096, p < 0.0001) and clustering algorithms, with unidirectional gene flow detected from east (New Caledonia) to west (Australia). These results reveal that reef manta rays can form genetically distinct groups within a relatively small geographic range and highlights the need to consider genetic structure when designating management units for conservation action and planning

    Data-Driven Interactive Multiobjective Optimization Using a Cluster-Based Surrogate in a Discrete Decision Space

    No full text
    In this paper, a clustering based surrogate is proposed to be used in offline data-driven multiobjective optimization to reduce the size of the optimization problem in the decision space. The surrogate is combined with an interactive multiobjective optimization approach and it is applied to forest management planning with promising results.peerReviewe
    corecore