9,721 research outputs found

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm−210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Fluctuation-Dissipation theorems and entropy production in relaxational systems

    Full text link
    We show that for stochastic dynamical systems out of equilibrium the violation of the fluctuation-dissipation equality is bounded by a function of the entropy production. The result applies to a much wider situation than `near equilibrium', comprising diffusion as well as glasses and other macroscopic systems far from equilibrium. For aging systems this bounds the age-frequency regimes in which the susceptibilities satisfy FDT in terms of the rate of decay of the H-function, a question intimately related to the reading of a thermometer placed in contact with the system.Comment: 4 pages, RevTex; formula and reference added plus various minor changes in the tex

    Moment evolution across the ferromagnetic phase transition of giant magnetocaloric (Mn,Fe)2(P,Si,B) compounds

    Get PDF
    A strong electronic reconstruction resulting in a quenching of the Fe magnetic moments has recently been predicted to be at the origin of the giant magnetocaloric effect displayed by Fe2Pbased materials. To verify this scenario, X-ray Magnetic Circular Dichroism experiments have been carried out at the L edges of Mn and Fe for two typical compositions of the (Mn,Fe)2(P,Si,B) system. The dichroic absorption spectra of Mn and Fe have been measured element specific in the vicinity of the first-order ferromagnetic transition. The experimental spectra are compared with first-principle calculations and charge-transfer multiplet simulations in order to derive the magnetic moments. Even though signatures of a metamagnetic behaviour are observed either as a function of the temperature or the magnetic field, the similarity of the Mn and Fe moment evolution suggests that the quenching of the Fe moment is weaker than previously predicted

    Energy and entropy of relativistic diffusing particles

    Full text link
    We discuss energy-momentum tensor and the second law of thermodynamics for a system of relativistic diffusing particles. We calculate the energy and entropy flow in this system. We obtain an exact time dependence of energy, entropy and free energy of a beam of photons in a reservoir of a fixed temperature.Comment: 14 pages,some formulas correcte

    A first--order irreversible thermodynamic approach to a simple energy converter

    Full text link
    Several authors have shown that dissipative thermal cycle models based on Finite-Time Thermodynamics exhibit loop-shaped curves of power output versus efficiency, such as it occurs with actual dissipative thermal engines. Within the context of First-Order Irreversible Thermodynamics (FOIT), in this work we show that for an energy converter consisting of two coupled fluxes it is also possible to find loop-shaped curves of both power output and the so-called ecological function against efficiency. In a previous work Stucki [J.W. Stucki, Eur. J. Biochem. vol. 109, 269 (1980)] used a FOIT-approach to describe the modes of thermodynamic performance of oxidative phosphorylation involved in ATP-synthesis within mithochondrias. In that work the author did not use the mentioned loop-shaped curves and he proposed that oxidative phosphorylation operates in a steady state simultaneously at minimum entropy production and maximum efficiency, by means of a conductance matching condition between extreme states of zero and infinite conductances respectively. In the present work we show that all Stucki's results about the oxidative phosphorylation energetics can be obtained without the so-called conductance matching condition. On the other hand, we also show that the minimum entropy production state implies both null power output and efficiency and therefore this state is not fulfilled by the oxidative phosphorylation performance. Our results suggest that actual efficiency values of oxidative phosphorylation performance are better described by a mode of operation consisting in the simultaneous maximization of the so-called ecological function and the efficiency.Comment: 20 pages, 7 figures, submitted to Phys. Rev.

    Effective description of brane terms in extra dimensions

    Get PDF
    We study how theories defined in (extra-dimensional) spaces with localized defects can be described perturbatively by effective field theories in which the width of the defects vanishes. These effective theories must incorporate a ``classical'' renormalization, and we propose a renormalization prescription a la dimensional regularization for codimension 1, which can be easily used in phenomenological applications. As a check of the validity of this setting, we compare some general predictions of the renormalized effective theory with those obtained in a particular ultraviolet completion based on deconstruction.Comment: 28 page

    Expert chess memory: Revisiting the chunking hypothesis

    Get PDF
    After reviewing the relevant theory on chess expertise, this paper re-examines experimentally the finding of Chase and Simon (1973a) that the differences in ability of chess players at different skill levels to copy and to recall positions are attributable to the experts' storage of thousands of chunks (patterned clusters of pieces) in long-term memory. Despite important differences in the experimental apparatus, the data of the present experiments regarding latencies and chess relations between successively placed pieces are highly correlated with those of Chase and Simon. We conclude that the 2-second inter-chunk interval used to define chunk boundaries is robust, and that chunks have psychological reality. We discuss the possible reasons why Masters in our new study used substantially larger chunks than the Master of the 1973 study, and extend the chunking theory to take account of the evidence for large retrieval structures (templates) in long-term memory

    Doping Dependence of the Electronic Structure of Ba_{1-x}K_{x}BiO_{3} Studied by X-Ray Absorption Spectroscopy

    Get PDF
    We have performed x-ray absorption spectroscopy (XAS) and x-ray photoemission spectroscopy (XPS) studies of single crystal Ba_{1-x}K_{x}BiO_{3} (BKBO) covering the whole composition range 0≀x≀0.600 \leq x \leq 0.60. Several features in the oxygen 1\textit{s} core XAS spectra show systematic changes with xx. Spectral weight around the absorption threshold increases with hole doping and shows a finite jump between x=0.30x=0.30 and 0.40, which signals the metal-insulator transition. We have compared the obtained results with band-structure calculations. Comparison with the XAS results of BaPb_{1-x}Bi_{x}O_{3} has revealed quite different doping dependences between BKBO and BPBO. We have also observed systematic core-level shifts in the XPS spectra as well as in the XAS threshold as functions of xx, which can be attributed to a chemical potential shift accompanying the hole doping. The observed chemical potential shift is found to be slower than that predicted by the rigid band model based on the band-structure calculations.Comment: 8 pages, 8 figures include

    Violation of particle number conservation in the it GW approximation

    Get PDF
    We present a nontrivial model system of interacting electrons that can be solved analytically in the GW approximation. We obtain the particle number from the GW Green's function strictly analytically, and prove that there is a genuine violation of particle number conservation if the self-energy is calculated non-self-consistently from a zeroth order Green's function, as done in virtually all practical implementations. We also show that a simple shift of the self-energy that partially restores self-consistency reduces the numerical deviation significantly

    Galilean limit of equilibrium relativistic mass distribution for indistinguishable events

    Full text link
    The relativistic distribution for indistinguishable events is considered in the mass-shell limit m2≅M2,m^2\cong M^2, where MM is a given intrinsic property of the events. The characteristic thermodynamic quantities are calculated and subject to the zero-mass and the high-temperature limits. The results are shown to be in agreement with the corresponding expressions of an on-mass-shell relativistic kinetic theory. The Galilean limit c→∞,c\rightarrow \infty , which coincides in form with the low-temperature limit, is considered. The theory is shown to pass over to a nonrelativistic statistical mechanics of indistinguishable particles.Comment: Report TAUP-2136-9
    • 

    corecore