29,093 research outputs found

    Project Management in NASA: The system and the men

    Get PDF
    An analytical description of the NASA project management system is presented with emphasis on the human element. The NASA concept of project management, program managers, and the problems and strengths of the NASA system are discussed

    Simulating `Complex' Problems with Quantum Monte Carlo

    Full text link
    We present a new quantum Monte Carlo algorithm suitable for generically complex problems, such as systems coupled to external magnetic fields or anyons in two spatial dimensions. We find that the choice of gauge plays a nontrivial role, and can be used to reduce statistical noise in the simulation. Furthermore, it is found that noise can be greatly reduced by approximate cancellations between the phases of the (gauge dependent) statistical flux and the external magnetic flux.Comment: Revtex, 11 pages. 3 postscript files for figures attache

    Intermittency and the passive nature of the magnitude of the magnetic field

    Full text link
    It is shown that the statistical properties of the magnitude of the magnetic field in turbulent electrically conducting media resemble, in the inertial range, those of passive scalars in fully developed three-dimensional fluid turbulence. This conclusion, suggested by the data from Advanced Composition Explorer, is supported by a brief analysis of the appropriate magnetohydrodynamic equations

    Dynamically-Driven Star Formation In Models Of NGC 7252

    Full text link
    We present new dynamical models of the merger remnant NGC 7252 which include star formation simulated according to various phenomenological rules. By using interactive software to match our model with the observed morphology and gas velocity field, we obtain a consistent dynamical model for NGC 7252. In our models, this proto-elliptical galaxy formed by the merger of two similar gas-rich disk galaxies which fell together with an initial pericentric separation of ~2 disk scale lengths approximately 620 Myr ago. Results from two different star formation rules--- density-dependent and shock-induced--- show significant differences in star formation during and after the first passage. Shock-induced star formation yields a prompt and wide-spread starburst at the time of first passage, while density-dependent star formation predicts a more slowly rising and centrally concentrated starburst. A comparison of the distributions and ages of observed clusters with results of our simulations favors shock-induced mechanism of star formation in NGC 7252. We also present simulated color images of our model of NGC 7252, constructed by incorporating population synthesis with radiative transfer and dust attenuation. Overall the predicted magnitudes and colors of the models are consistent with observations, although the simulated tails are fainter and redder than observed. We suggest that a lack of star formation in the tails, reflected by the redder colors, is due to an incomplete description of star formation in our models rather than insufficient gas in the tails.Comment: 11 pages, 9 figures, to be published in MNRA

    Non-linear rheology of active particle suspensions: Insights from an analytical approach

    Full text link
    We consider active suspensions in the isotropic phase subjected to a shear flow. Using a set of extended hydrodynamic equations we derive a variety of {\em analytical} expressions for rheological quantities such as shear viscosity and normal stress differences. In agreement to full-blown numerical calculations and experiments we find a shear thickening or -thinning behaviour depending on whether the particles are contractile or extensile. Moreover, our analytical approach predicts that the normal stress differences can change their sign in contrast to passive suspensions.Comment: 11 pages, 10 figures, appear in PR

    Novel highly conductive and transparent graphene based conductors

    Get PDF
    Future wearable electronics, displays and photovoltaic devices rely on highly conductive, transparent and yet mechanically flexible materials. Nowadays indium tin oxide (ITO) is the most wide spread transparent conductor in optoelectronic applications, however the mechanical rigidity of this material limits its use for future flexible devices. Here we report novel transparent conductors based on few layer graphene (FLG) intercalated with ferric chloride (FeCl3) with an outstandingly high electrical conductivity and optical transparency. We show that upon intercalation a record low sheet resistance of 8.8 Ohm/square is attained together with an optical transmittance higher than 84% in the visible range. These parameters outperform the best values of ITO and of other carbon-based materials, making these novel transparent conductors the best candidates for future flexible optoelectronics

    Determining the terahertz optical properties of subwavelength films using semiconductor surface plasmons

    Get PDF
    Copyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 93 (2008) and may be found at http://link.aip.org/link/?APPLAB/93/241115/1By employing a combination of time-domain measurements and numerical calculations, we demonstrate that the semiconductor InSb supports a strongly confined surface plasmon (SP) in the terahertz frequency range. We show that these SPs can be used to enhance the light-matter interaction with dielectric layers above the semiconductor surface, thereby allowing us to detect the presence of polystyrene layers around 1000 times thinner than the free space wavelength of the terahertz light. Finally we discuss the viability of using semiconductor SPs for the purposes of terahertz sensing and spectroscopy

    Light outcoupling efficiency of top-emitting organic light-emitting diodes

    Get PDF
    Copyright © 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters 84 (2004) and may be found at http://link.aip.org/link/?APPLAB/84/2986/1We report results obtained from modeling the light outcoupling efficiency of top–emitting organic light-emitting diode (OLED) structures and compare them with results from conventional substrate-emitting structures. We investigate two types of emissive material, small molecule and conjugated polymers, and study three different cathode materials; aluminum, silver, and calcium. We show that top-emitting OLEDs may have outcoupling efficiencies comparable to their substrate-emitting counterparts, and that the choice of cathode material is critical to the optical performance of the device

    SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations

    Get PDF
    Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed
    • …
    corecore