159 research outputs found

    Velocity statistics in excited granular media

    Full text link
    We present an experimental study of velocity statistics for a partial layer of inelastic colliding beads driven by a vertically oscillating boundary. Over a wide range of parameters (accelerations 3-8 times the gravitational acceleration), the probability distribution P(v) deviates measurably from a Gaussian for the two horizontal velocity components. It can be described by P(v) ~ exp(-|v/v_c|^1.5), in agreement with a recent theory. The characteristic velocity v_c is proportional to the peak velocity of the boundary. The granular temperature, defined as the mean square particle velocity, varies with particle density and exhibits a maximum at intermediate densities. On the other hand, for free cooling in the absence of excitation, we find an exponential velocity distribution. Finally, we examine the sharing of energy between particles of different mass. The more massive particles are found to have greater kinetic energy.Comment: 27 pages, 13 figures, to appear in Chaos, September 99, revised 3 figures and tex

    Noise activated granular dynamics

    Full text link
    We study the behavior of two particles moving in a bistable potential, colliding inelastically with each other and driven by a stochastic heat bath. The system has the tendency to clusterize, placing the particles in the same well at low drivings, and to fill all of the available space at high temperatures. We show that the hopping over the potential barrier occurs following the Arrhenius rate, where the heat bath temperature is replaced by the granular temperature. Moreover, within the clusterized ``phase'' one encounters two different scenarios: for moderate inelasticity, the jumps from one well to the other involve one particle at a time, whereas for strong inelasticity the two particles hop simultaneously.Comment: RevTex4, 4 pages, 4 eps figures, Minor revisio

    Geometry of Valley Growth

    Full text link
    Although amphitheater-shaped valley heads can be cut by groundwater flows emerging from springs, recent geological evidence suggests that other processes may also produce similar features, thus confounding the interpretations of such valley heads on Earth and Mars. To better understand the origin of this topographic form we combine field observations, laboratory experiments, analysis of a high-resolution topographic map, and mathematical theory to quantitatively characterize a class of physical phenomena that produce amphitheater-shaped heads. The resulting geometric growth equation accurately predicts the shape of decimeter-wide channels in laboratory experiments, 100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on Mars. We find that whenever the processes shaping a landscape favor the growth of sharply protruding features, channels develop amphitheater-shaped heads with an aspect ratio of pi

    Aggregation of frictional particles due to capillary attraction

    Full text link
    Capillary attraction between identical millimeter sized spheres floating at a liquid-air interface and the resulting aggregation is investigated at low Reynolds number. We show that the measured capillary forces between two spheres as a function of distance can be described by expressions obtained using the Nicolson approximation at low Bond numbers for far greater particle sizes than previously assumed. We find that viscous hydrodynamics interactions between the spheres needs to be included to describe the dynamics close to contact. We then consider the aggregates formed when a third sphere is added after the initial two spheres are already in contact. In this case, we find that linear superposition of capillary forces describes the observed approach qualitatively but not quantitatively. Further, we observe an angular dependence of the structure due to a rapid decrease of capillary force with distance of separation which has a tendency to align the particles before contact. When the three particles come in contact, they may preserve their shape or rearrange to form an equilateral triangle cluster - the lowest energy state - depending on the competition between attraction between particles and friction. Using these observations, we demonstrate that a linear particle chain can be built from frictional particles with capillary attraction.Comment: accepted for Physical Review

    A computational model of twisted elastic ribbons

    Get PDF
    We develop an irregular lattice mass-spring-model (MSM) to simulate and study the deformation modes of a thin elastic ribbon as a function of applied end-to-end twist and tension. Our simulations reproduce all reported experimentally observed modes, including transitions from helicoids to longitudinal wrinkles, creased helicoids and loops with self-contact, and transverse wrinkles to accordion self-folds. Our simulations also show that the twist angles at which the primary longitudinal and transverse wrinkles appear are well described by various analyses of the F\"oppl-von K\'arm\'an (FvK) equations, but the characteristic wavelength of the longitudinal wrinkles has a more complex relationship to applied tension than previously estimated. The clamped edges are shown to suppress longitudinal wrinkling over a distance set by the applied tension and the ribbon width, but otherwise have no apparent effect on measured wavelength. Further, by analyzing the stress profile, we find that longitudinal wrinkling does not completely alleviate compression, but caps the magnitude of the compression. Nonetheless, the width over which wrinkles form is observed to be wider than the near-threshold analysis predictions -- the width is more consistent with the predictions of far-from-threshold analysis. However, the end-to-end contraction of the ribbon as a function of twist is found to more closely follow the corresponding near-threshold prediction as tension in the ribbon is increased, in contrast to the expectations of far-from-threshold analysis. These results point to the need for further theoretical analysis of this rich thin elastic system, guided by our physically robust and intuitive simulation model.Comment: 19 pages, 15 figure

    Super-lattice, rhombus, square, and hexagonal standing waves in magnetically driven ferrofluid surface

    Full text link
    Standing wave patterns that arise on the surface of ferrofluids by (single frequency) parametric forcing with an ac magnetic field are investigated experimentally. Depending on the frequency and amplitude of the forcing, the system exhibits various patterns including a superlattice and subharmonic rhombuses as well as conventional harmonic hexagons and subharmonic squares. The superlattice arises in a bicritical situation where harmonic and subharmonic modes collide. The rhombic pattern arises due to the non-monotonic dispersion relation of a ferrofluid

    End-tidal carbon dioxide monitoring during bag valve ventilation: the use of a new portable device

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For healthcare providers in the prehospital setting, bag-valve mask (BVM) ventilation could be as efficacious and safe as endotracheal intubation. To facilitate the evaluation of efficacious ventilation, capnographs have been further developed into small and convenient devices able to provide end- tidal carbon dioxide (ETCO<sub>2</sub>). The aim of this study was to investigate whether a new portable device (EMMA™) attached to a ventilation mask would provide ETCO<sub>2 </sub>values accurate enough to confirm proper BVM ventilation.</p> <p>Methods</p> <p>A prospective observational trial was conducted in a single level-2 centre. Twenty-two patients under general anaesthesia were manually ventilated. ETCO<sub>2 </sub>was measured every five minutes with the study device and venous PCO<sub>2 </sub>(PvCO<sub>2</sub>) was simultaneously measured for comparison. Bland- Altman plots were used to compare ETCO<sub>2, </sub>and PvCO<sub>2</sub>.</p> <p>Results</p> <p>The patients were all hemodynamically and respiratory stable during anaesthesia. End-tidal carbon dioxide values were corresponding to venous gases during BVM ventilation under optimal conditions. The bias, the mean of the differences between the two methods (device versus venous blood gases), for time points 1-4 ranges from -1.37 to -1.62.</p> <p>Conclusion</p> <p>The portable device, EMMA™ is suitable for determining carbon dioxide in expired air (kPa) as compared to simultaneous samples of PvCO<sub>2</sub>. It could therefore, be a supportive tool to asses the BVM ventilation in the demanding prehospital and emergency setting.</p

    Erosion of a granular bed driven by laminar fluid flow

    Full text link
    Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux QQ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height hrh_r which depends on QQ. The Shields threshold criterion assumes that the non-dimensional ratio θ\theta of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for θ>θc\theta >\theta_c. We find that the Shields criterion describes the observed relationship hrQ1/2h_r \propto Q^{1/2} when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of θ\theta yields a collapse of the measured Einstein number qq^* to a power-law function of θθc\theta - \theta_c with exponent 1.75±0.251.75 \pm 0.25. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.Comment: 12 pages, 5 figure

    Curvature condensation and bifurcation in an elastic shell

    Full text link
    We study the formation and evolution of localized geometrical defects in an indented cylindrical elastic shell using a combination of experiment and numerical simulation. We find that as a symmetric localized indentation on a semi-cylindrical shell increases, there is a transition from a global mode of deformation to a localized one which leads to the condensation of curvature along a symmetric parabolic crease. This process introduces a soft mode in the system, converting a load-bearing structure into a hinged, kinematic mechanism. Further indentation leads to twinning wherein the parabolic crease bifurcates into two creases that move apart on either side of the line of symmetry. A qualitative theory captures the main features of the phenomena and leads to sharper questions about the nucleation of these defects.Comment: 4 pages, 5 figures, submitted to Physical Review Letter
    corecore