49 research outputs found

    Heads and tails: The notochord develops differently in the cranium and caudal fin of Atlantic Salmon (Salmo salar, L.)

    Get PDF
    While it is well known that the notochord of bony fishes changes over developmental time, less is known about how it varies across different body regions. In the development of the Atlantic salmon, Salmo salar L., cranial and caudal ends of the notochord are overlaid by the formation of the bony elements of the neurocranium and caudal fin, respectively. To investigate, we describe how the notochord of the cranium and caudal fin changes from embryo to spawning adult, using light microscopy, SEM, TEM, dissection, and CT scanning. The differences are dramatic. In contrast to the abdominal and caudal regions, at the ends of the notochord vertebrae never develop. While the cranial notochord builds a tapering, unsegmented cone of chordal bone, the urostylic notochordal sheath never ossifies: adjacent, irregular bony elements form from the endoskeleton of the caudal fin. As development progresses, two previously undescribed processes occur. First, the bony cone of the cranial notochord, and its internal chordocytes, are degraded by chordoclasts, an undescribed function of the clastic cell type. Second, the sheath of the urostylic notochord creates transverse septae that partly traverse the lumen in an irregular pattern. By the adult stage, the cranial notochord is gone. In contrast, the urostylic notochord in adults is robust, reinforced with septae, covered by irregularly shaped pieces of cellular bone, and capped with an opistural cartilage that develops from the sheath of the urostylic notochord. A previously undescribed muscle, with its origin on the opistural cartilage, inserts on the lepidotrich ventral to it.publishedVersio

    Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism

    No full text
    Fish oil polyunsaturated fatty acids and fibrate hypolipidemic drugs are potent hypotriglyceridemic agents that act by increasing fatty acid catabolism and decreasing triglyceride synthesis and secretion by the liver. A major unresolved issue is whether this hypotriglyceridemic effect can occur independent of induction of peroxisomal beta-oxidation, a predisposing factor for hepatocarcinogenesis. The present study was undertaken to determine which component of fish oil, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), is responsible for its triglyceride-lowering effect. We demonstrate that EPA and not DHA is the hypotriglyceridemic component of fish oil and that mitochondria and not peroxisomes are the principal target. Results obtained by fenofibrate feeding support the hypothesis that the mitochondrion is the primary site for the hypotriglyceridemic effect. In contrast to fibrates, EPA did not affect hepatic apolipoprotein C-III gene expression. Therefore, increased mitochondrial beta-oxidation with a concomitant decrease in triglyceride synthesis and secretion seems to be the primary mechanism underlying the hypotriglyceridemic effect of EPA and fibrates in rats, rabbits and possibly also in humans. In addition, these data show that lowering of plasma triglycerides can occur independently of any deleterious peroxisome proliferation

    Heads and tails: The notochord develops differently in the cranium and caudal fin of Atlantic Salmon (Salmo salar, L.)

    No full text
    While it is well known that the notochord of bony fishes changes over developmental time, less is known about how it varies across different body regions. In the development of the Atlantic salmon, Salmo salar L., cranial and caudal ends of the notochord are overlaid by the formation of the bony elements of the neurocranium and caudal fin, respectively. To investigate, we describe how the notochord of the cranium and caudal fin changes from embryo to spawning adult, using light microscopy, SEM, TEM, dissection, and CT scanning. The differences are dramatic. In contrast to the abdominal and caudal regions, at the ends of the notochord vertebrae never develop. While the cranial notochord builds a tapering, unsegmented cone of chordal bone, the urostylic notochordal sheath never ossifies: adjacent, irregular bony elements form from the endoskeleton of the caudal fin. As development progresses, two previously undescribed processes occur. First, the bony cone of the cranial notochord, and its internal chordocytes, are degraded by chordoclasts, an undescribed function of the clastic cell type. Second, the sheath of the urostylic notochord creates transverse septae that partly traverse the lumen in an irregular pattern. By the adult stage, the cranial notochord is gone. In contrast, the urostylic notochord in adults is robust, reinforced with septae, covered by irregularly shaped pieces of cellular bone, and capped with an opistural cartilage that develops from the sheath of the urostylic notochord. A previously undescribed muscle, with its origin on the opistural cartilage, inserts on the lepidotrich ventral to it
    corecore