972 research outputs found

    Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations

    Full text link
    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ~30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.Comment: Accepted for publication in The Astrophysical Journal. 15 pages, 27 figures. (v2 corrects citation

    Calculated intermolecular interactions in secondary chlorides

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71083/2/JCPSA6-59-9-5195-1.pd

    Swift J1734.5-3027: a new long type-I X-ray bursting source

    Get PDF
    Swift J1734.5-3027 is a hard X-ray transient discovered by Swift while undergoing an outburst in September 2013. Archival observations showed that this source underwent a previous episode of enhanced X-ray activity in May-June 2013. In this paper we report on the analysis of all X-ray data collected during the outburst in September 2013, the first that could be intensively followed-up by several X-ray facilities. Our data-set includes INTEGRAL, Swift, and XMM-Newton observations. From the timing and spectral analysis of these observations, we show that a long type-I X-ray burst took place during the source outburst, making Swift J1734.5-3027 a new member of the class of bursting neutron star low-mass X-ray binaries. The burst lasted for about 1.9 ks and reached a peak flux of (6.0±\pm1.8)×\times10−8^{-8} erg cm−2^{-2} s−1^{-1} in the 0.5-100 keV energy range. The estimated burst fluence in the same energy range is (1.10±\pm0.10)×\times10−5^{-5} erg cm−2^{-2}. By assuming that a photospheric radius expansion took place during the first ∼\sim200 s of the burst and that the accreted material was predominantly composed by He, we derived a distance to the source of 7.2±\pm1.5 kpc.Comment: Accepted for publication on A&

    Discovery and evolution of the new black hole candidate Swift J1539.2-6227 during its 2008 outburst

    Get PDF
    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the black hole candidate Swift J1539.2-6227 and the subsequent course of an outburst beginning in November 2008 and lasting at least seven months. The source was discovered during normal observations with the Swift Burst Alert Telescope (BAT) on 2008 November 25. An extended observing campaign with the Rossi X-Ray Timing Explorer (RXTE) and Swift provided near-daily coverage over 176 days, giving us a good opportunity to track the evolution of spectral and timing parameters with fine temporal resolution through a series of spectral states. The source was first detected in a hard state during which strong low-frequency quasi-periodic oscillations (QPOs) were detected. The QPOs persisted for about 35 days and a signature of the transition from the hard to soft intermediate states was seen in the timing data. The source entered a short-lived thermal state about 40 days after the start of the outburst. There were variations in spectral hardness as the source flux declined and returned to a hard state at the end of the outburst. The progression of spectral states and the nature of the timing features provide strong evidence that Swift J1539.2-6227 is a candidate black hole in a low-mass X-ray binary system.Comment: Accepted by the Astrophysical Journa

    Long-term variability of AGN at hard X-rays

    Get PDF
    Variability at all observed wavelengths is a distinctive property of AGN. Hard X-rays provide us with a view of the innermost regions of AGN, mostly unbiased by absorption along the line of sight. Swift/BAT offers the unique opportunity to follow, on time scales of days to years and with a regular sampling, the 14-195 keV emission of the largest AGN sample available up to date for this kind of investigation. We study the amplitude of the variations, and their dependence on sub-class and on energy, for a sample of 110 radio quiet and radio loud AGN selected from the BAT 58-month survey. About 80% of the AGN in the sample are found to exhibit significant variability on months to years time scales, radio loud sources being the most variable. The amplitude of the variations and their energy dependence are incompatible with variability being driven at hard X-rays by changes of the absorption column density. In general, the variations in the 14-24 and 35-100 keV bands are well correlated, suggesting a common origin of the variability across the BAT energy band. However, radio quiet AGN display on average 10% larger variations at 14-24 keV than at 35-100 keV and a softer-when-brighter behavior for most of the Seyfert galaxies with detectable spectral variability on month time scale. In addition, sources with harder spectra are found to be more variable than softer ones. These properties are generally consistent with a variable power law continuum, in flux and shape, pivoting at energies >~ 50 keV, to which a constant reflection component is superposed. When the same time scales are considered, the timing properties of AGN at hard X-rays are comparable to those at lower energies, with at least some of the differences possibly ascribable to components contributing differently in the two energy domains (e.g., reflection, absorption).Comment: 17 pages, 11 figures, accepted for publication in A&

    The Infocus Hard X-ray Telescope: Pixellated CZT Detector/Shield Performance and Flight Results

    Get PDF
    The CZT detector on the Infocus hard X-ray telescope is a pixellated solid-state device capable of imaging spectroscopy by measuring the position and energy of each incoming photon. The detector sits at the focal point of an 8m focal length multilayered grazing incidence X-ray mirror which has significant effective area between 20--40 keV. The detector has an energy resolution of 4.0keV at 32keV, and the Infocus telescope has an angular resolution of 2.2 arcminute and a field of view of about 10 arcminutes. Infocus flew on a balloon mission in July 2001 and observed Cygnus X-1. We present results from laboratory testing of the detector to measure the uniformity of response across the detector, to determine the spectral resolution, and to perform a simple noise decomposition. We also present a hard X-ray spectrum and image of Cygnus X-1, and measurements of the hard X-ray CZT background obtained with the SWIN detector on Infocus.Comment: To appear in the proceedings of the SPIE conference "Astronomical Telescopes and Instrumentation", #4851-116, Kona, Hawaii, Aug. 22-28, 2002. 12 pages, 9 figure

    A Study of the 20 Day Superorbital Modulation in the High-Mass X-ray Binary IGR J16493-4348

    Get PDF
    We report on Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory (Swift) X-ray Telescope (XRT) and Swift Burst Alert Telescope (BAT) observations of IGR J16493-4348, a wind-fed Supergiant X-ray Binary (SGXB) showing significant superorbital variability. From a discrete Fourier transform of the BAT light curve, we refine its superorbital period to be 20.058 ±\pm 0.007 days. The BAT dynamic power spectrum and a fractional root mean square analysis both show strong variations in the amplitude of the superorbital modulation, but no observed changes in the period were found. The superorbital modulation is significantly weaker between MJD 55,700 and MJD 56,300. The joint NuSTAR and XRT observations, which were performed near the minimum and maximum of one cycle of the 20 day superorbital modulation, show that the flux increases by more than a factor of two between superorbital minimum and maximum. We find no significant changes in the 3-50 keV pulse profiles between superorbital minimum and maximum, which suggests a similar accretion regime. Modeling the pulse-phase averaged spectra we find a possible Fe Kα\alpha emission line at 6.4 keV at superorbital maximum. The feature is not significant at superorbital minimum. While we do not observe any significant differences between the pulse-phase averaged spectral continua apart from the overall flux change, we find that the hardness ratio near the broad main peak of the pulse profile increases from superorbital minimum to maximum. This suggests the spectral shape hardens with increasing luminosity. We discuss different mechanisms that might drive the observed superorbital modulation.Comment: 17 pages, 14 figures, 3 tables, accepted for publication in The Astrophysical Journal on 2019 May 1
    • …
    corecore