9,558 research outputs found

    Covariant Canonical Gauge theory of Gravitation resolves the Cosmological Constant Problem

    Full text link
    The covariant canonical transformation theory applied to the relativistic theory of classical matter fields in dynamic space-time yields a new (first order) gauge field theory of gravitation. The emerging field equations embrace a quadratic Riemann curvature term added to Einstein's linear equation. The quadratic term facilitates a momentum field which generates a dynamic response of space-time to its deformations relative to de Sitter geometry, and adds a term proportional to the Planck mass squared to the cosmological constant. The proportionality factor is given by a dimensionless parameter governing the strength of the quadratic term. In consequence, Dark Energy emerges as a balanced mix of three contributions, (A)dS curvature plus the residual vacuum energy of space-time and matter. The Cosmological Constant Problem of the Einstein-Hilbert theory is resolved as the curvature contribution relieves the rigid relation between the cosmological constant and the vacuum energy density of matter

    Dynamic transitions and hysteresis

    Get PDF
    When an interacting many-body system, such as a magnet, is driven in time by an external perturbation, such as a magnetic field,the system cannot respond instantaneously due to relaxational delay. The response of such a system under a time-dependent field leads to many novel physical phenomena with intriguing physics and important technological applications. For oscillating fields, one obtains hysteresis that would not occur under quasistatic conditions in the presence of thermal fluctuations. Under some extreme conditions of the driving field, one can also obtain a non-zero average value of the variable undergoing such dynamic hysteresis. This non-zero value indicates a breaking of symmetry of the hysteresis loop, around the origin. Such a transition to the spontaneously broken symmetric phase occurs dynamically when the driving frequency of the field increases beyond its threshold value which depends on the field amplitude and the temperature. Similar dynamic transitions also occur for pulsed and stochastically varying fields. We present an overview of the ongoing researches in this not-so-old field of dynamic hysteresis and transitions.Comment: 30 Pages Revtex, 10 Postscript figures. To appear in Reviews of Modern Physics, April, 199

    Canonical Transformation Path to Gauge Theories of Gravity

    Full text link
    In this paper, the generic part of the gauge theory of gravity is derived, based merely on the action principle and on the general principle of relativity. We apply the canonical transformation framework to formulate geometrodynamics as a gauge theory. The starting point of our paper is constituted by the general De~Donder-Weyl Hamiltonian of a system of scalar and vector fields, which is supposed to be form-invariant under (global) Lorentz transformations. Following the reasoning of gauge theories, the corresponding locally form-invariant system is worked out by means of canonical transformations. The canonical transformation approach ensures by construction that the form of the action functional is maintained. We thus encounter amended Hamiltonian systems which are form-invariant under arbitrary spacetime transformations. This amended system complies with the general principle of relativity and describes both, the dynamics of the given physical system's fields and their coupling to those quantities which describe the dynamics of the spacetime geometry. In this way, it is unambiguously determined how spin-0 and spin-1 fields couple to the dynamics of spacetime. A term that describes the dynamics of the free gauge fields must finally be added to the amended Hamiltonian, as common to all gauge theories, to allow for a dynamic spacetime geometry. The choice of this "dynamics Hamiltonian" is outside of the scope of gauge theory as presented in this paper. It accounts for the remaining indefiniteness of any gauge theory of gravity and must be chosen "by hand" on the basis of physical reasoning. The final Hamiltonian of the gauge theory of gravity is shown to be at least quadratic in the conjugate momenta of the gauge fields -- this is beyond the Einstein-Hilbert theory of General Relativity.Comment: 16 page

    Uniform existence of the integrated density of states for random Schr\"odinger operators on metric graphs over Zd\mathbb{Z}^d

    Get PDF
    We consider ergodic random magnetic Schr\"odinger operators on the metric graph Zd\mathbb{Z}^d with random potentials and random boundary conditions taking values in a finite set. We show that normalized finite volume eigenvalue counting functions converge to a limit uniformly in the energy variable. This limit, the integrated density of states, can be expressed by a closed Shubin-Pastur type trace formula. It supports the spectrum and its points of discontinuity are characterized by existence of compactly supported eigenfunctions. Among other examples we discuss percolation models.Comment: 17 pages; typos removed, references updated, definition of subgraph densities explaine

    In-orbit Vignetting Calibrations of XMM-Newton Telescopes

    Full text link
    We describe measurements of the mirror vignetting in the XMM-Newton Observatory made in-orbit, using observations of SNR G21.5-09 and SNR 3C58 with the EPIC imaging cameras. The instrument features that complicate these measurements are briefly described. We show the spatial and energy dependences of measured vignetting, outlining assumptions made in deriving the eventual agreement between simulation and measurement. Alternate methods to confirm these are described, including an assessment of source elongation with off-axis angle, the surface brightness distribution of the diffuse X-ray background, and the consistency of Coma cluster emission at different position angles. A synthesis of these measurements leads to a change in the XMM calibration data base, for the optical axis of two of the three telescopes, by in excess of 1 arcminute. This has a small but measureable effect on the assumed spectral responses of the cameras for on-axis targets.Comment: Accepted by Experimental Astronomy. 26 pages, 18 figure

    Melanoma-associated adhesion molecule MUC18/MCAM (CD146) and transcriptional regulator Mader in normal human CNS

    Get PDF
    The proteins MUC18 and Mader have been identified as markers of tumor progression in melanoma cells, MUC18, also known as MCAM (melanoma cell adhesion molecule) and as CD146 (endothelial antigen), is a cell adhesion molecule belonging to the immunoglobulin superfamily, Mader is a transcriptional regulator shown to negatively regulate EGR-1. As it is known that neoplastic cells of neuroectodermal origin frequently express neuron-specific molecules, we studied whether these melanoma-associated antigens are found in normal CNS tissue. We investigated the expression of MUC18/MCAM and Mader in adult human post mortem CNS tissue by immunohistochemistry, immunoblot and two-dimensional gel electrophoresis. Our results show that Mader is preferentially expressed on neurons and glial cells and that the adhesion protein MUC18/MCAM is mainly expressed on vasculature within the CNS. These observations may have important implications for further studies investigating their possible roles in cell adhesion and proliferation control within the CNS

    Density of Surface States in Discrete Models

    Get PDF
    We consider a simple quantum model with a surface and prove the existence of a surface density of states. We show that the energy spectrum of the model is the union of the support of the bulk densities of states of the media forming the surface and the support of the surface density of states

    The repulsion between localization centers in the Anderson model

    Full text link
    In this note we show that, a simple combination of deep results in the theory of random Schr\"odinger operators yields a quantitative estimate of the fact that the localization centers become far apart, as corresponding energies are close together

    Compiling geophysical and geological information into a 3-D model of the glacially-affected island of Föhr

    Get PDF
    Within the scope of climatic change and associated sea level rise, coastal aquifers are endangered and are becoming more a focus of research to ensure the future water supply in coastal areas. For groundwater modelling a good understanding of the geological/hydrogeological situation and the aquifer behavior is necessary. In preparation of groundwater modelling and assessment of climate change impacts on coastal water resources, we setup a geological/hydrogeological model for the North Sea Island of Föhr. <br><br> Data from different geophysical methods applied from the air, the surface and in boreholes contribute to the 3-D model, e.g. airborne electromagnetics (SkyTEM) for spatial mapping the resistivity of the entire island, seismic reflections for detailed cross-sections in the groundwater catchment area, and geophysical borehole logging for calibration of these measurements. An iterative and integrated evaluation of the results from the different geophysical methods contributes to reliable data as input for the 3-D model covering the whole island and not just the well fields. <br><br> The complex subsurface structure of the island is revealed. The local waterworks use a freshwater body embedded in saline groundwater. Several glaciations reordered the youngest Tertiary and Quaternary sediments by glaciotectonic thrust faulting, as well as incision and refill of glacial valleys. Both subsurface structures have a strong impact on the distribution of freshwater-bearing aquifers. A digital geological 3-D model reproduces the hydrogeological structure of the island as a base for a groundwater model. In the course of the data interpretation, we deliver a basis for rock identification. <br><br> We demonstrate that geophysical investigation provide petrophysical parameters and improve the understanding of the subsurface and the groundwater system. The main benefit of our work is that the successful combination of electromagnetic, seismic and borehole data reveals the complex geology of a glacially-affected island. A sound understanding of the subsurface structure and the compilation of a 3-D model is imperative and the basis for a groundwater flow model to predict climate change effects on future water resources
    • …
    corecore