1,089 research outputs found

    Work-rate of substitutes in elite soccer: A preliminary study

    Get PDF
    The aim of this study was to investigate the work-rate of substitutes in professional soccer. A computerised player tracking system was used to assess the work-rates of second-half substitutes (11 midfielders and 14 forwards) in a French Ligue 1 club. Total distance, distance covered in five categories of movement intensity and recovery time between high-intensity efforts were evaluated. First- and second-half work-rates of the replaced players were compared. The performance of substitutes was compared to that of the players they replaced, to team-mates in the same position who remained on the pitch after the substitution and in relation to their habitual performances when starting games. No differences in work-rate between first- and second-halves were observed in all players who were substituted. In the second-half, a non-significant trend was observed in midfield substitutes who covered greater distances than the player they replaced whereas no differences were observed in forwards. Midfield substitutes covered a greater overall distance and distance at high-intensities (p<0.01) and had a lower recovery time between high-intensity efforts (p<0.01) compared to other midfield team-mates who remained on the pitch. Forwards covered less distance (p<0.01) in their first 10-minutes as a substitute compared to their habitual work-rate profile in the opening 10-minutes when starting matches while this finding was not observed in midfielders. These findings suggest that compared to midfield substitutes, forward substitutes did not utilise their full physical potential. Further investigation is warranted into the reasons behind this finding in order to optimise the work-rate contributions of forward substitutes

    Small Angle Scattering by Fractal Aggregates: A Numerical Investigation of the Crossover Between the Fractal Regime and the Porod Regime

    Full text link
    Fractal aggregates are built on a computer using off-lattice cluster-cluster aggregation models. The aggregates are made of spherical particles of different sizes distributed according to a Gaussian-like distribution characterised by a mean a0a_0 and a standard deviation σ\sigma. The wave vector dependent scattered intensity I(q)I(q) is computed in order to study the influence of the particle polydispersity on the crossover between the fractal regime and the Porod regime. It is shown that, given a0a_0, the location qcq_c of the crossover decreases as σ\sigma increases. The dependence of qcq_c on σ\sigma can be understood from the evolution of the shape of the center-to-center interparticle-distance distribution function.Comment: RevTex, 4 pages + 6 postscript figures, compressed using "uufiles", published in Phys. Rev. B 50, 1305 (1994

    Fluctuating Bond Aggregation: a Model for Chemical Gel Formation

    Full text link
    The Diffusion-Limited Cluster-Cluster Aggregation (DLCA) model is modified by including cluster deformations using the {\it bond fluctuation} algorithm. From 3dd computer simulations, it is shown that, below a given threshold value cgc_g of the volumic fraction cc, the realization of all intra-aggregate bonding possibilities prevents the formation of a gelling network. For c>cgc>c_g, the sol-gel transition occurs at a time tgt_g which, in contrast to DLCA, doesnot diverge with the box size. Several results are reported including small angle scattering curves and possible applications are discussed.Comment: RevTex, 9 pages + 3 postscript figures appended using "uufiles". To appear in Phys. Rev. Let

    Kondo spin liquid and magnetically long-range ordered states in the Kondo necklace model

    Full text link
    A simplified version of the symmetric Kondo lattice model, the Kondo necklace model, is studied by using a representation of impurity and conduction electron spins in terms of local Kondo singlet and triplet operators. Within a mean field theory, a spin gap always appears in the spin triplet excitation spectrum in 1D, leading to a Kondo spin liquid state for any finite values of coupling strength t/Jt/J (with tt as hopping and JJ as exchange); in 2D and 3D cubic lattices the spin gaps are found to vanish continuously around (t/J)c≈0.70(t/J)_c\approx 0.70 and (t/J)c≈0.38(t/J)_c\approx 0.38, respectively, where quantum phase transitions occur and the Kondo spin liquid state changes into an antiferromagnetically long-range ordered state. These results are in agreement with variational Monte Carlo, higher-order series expansion, and recent quantum Monte Carlo calculations for the symmetric Kondo lattice modelComment: Revtex, four pages, three figures; to be published in Physical Review B1, 1 July (2000

    New universality class for the three-dimensional XY model with correlated impurities: Application to 4^4He in aerogels

    Full text link
    Encouraged by experiments on 4^4He in aerogels, we confine planar spins in the pores of simulated aerogels (diffusion limited cluster-cluster aggregation) in order to study the effect of quenched disorder on the critical behavior of the three-dimensional XY model. Monte Carlo simulations and finite-size scaling are used to determine critical couplings KcK_c and exponents. In agreement with experiments, clear evidence of change in the thermal critical exponents ν\nu and α\alpha is found at nonzero volume fractions of impurities. These changes are explained in terms of {\it hidden} long-range correlations within disorder distributions.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Spin 3/2 dimer model

    Full text link
    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter

    Zero-temperature Phase Diagram For Strongly-Correlated Nanochains

    Full text link
    Recently there has been a resurgence of intense experimental and theoretical interest on the Kondo physics of nanoscopic and mesoscopic systems due to the possibility of making experiments in extremely small samples. We have carried out exact diagonalization calculations to study the effect of the energy spacing Δ\Delta of the conduction band on the ground-state properties of a dense Anderson model nanochain. The calculations reveal for the first time that the energy spacing tunes the interplay between the Kondo and RKKY interactions, giving rise to a zero-temperature Δ\Delta versus hybridization phase diagram with regions of prevailing Kondo or RKKY correlations, separated by a {\it free spins} regime. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties.Comment: 8 pages, 3 figures. J. Appl. Phys. (in press

    Dopant-Bound Spinons in Cu_(1-x)Zn_xGeO_3

    Full text link
    Polarized inelastic light scattering experiments on Cu_(1-x)Zn_xGeO_3 (0<= x 0 a new distinct mode at nearly half the energy of the singlet response below the spin-Peierls transition. The temperature, magnetic field, polarization, and doping dependencies of this mode are similar to those of the singlet bound state. The data are interpreted in terms of a spinon-assisted light scattering process. Position and form of the peak provide strong evidence for the presence of dopant-bound spinons in Cu_(1-x)Zn_xGeO_3.Comment: 4 pages, Latex with 3 figures, including EPL style files, Eur. Phys. Lett. in pres

    Size segregation and convection

    Full text link
    The size segregation of granular materials in a vibrating container is investigated using Molecular Dynamics. We find that the rising of larger particles is accompanied by the existence of convection cells even in the case of the lowest possible frequencies. The convection can, however, also be triggered by the larger particle itself. The possibility of rising through this mechanism strongly depends on the depth of the larger particle.Comment: 7 pages, 4 figure

    Cosmological Phases of the String Thermal Effective Potential

    Full text link
    In a superstring framework, the free energy density, F, can be determined unambiguously at the full string level once supersymmetry is spontaneously broken via geometrical fluxes. We show explicitly that only the moduli associated to the supersymmetry breaking may give relevant contributions. All other spectator moduli \mu_I give exponentially suppressed contributions for relatively small (as compared to the string scale) temperature, T, and supersymmetry breaking scale, M. More concisely, for \mu_I > T and M, F takes the form F(T,M; \mu_I)=F(T,M)+O[exp(- {\mu_I\over T}), exp(- {\mu_I\over M})] We study the cosmological regime where T and M are below the Hagedorn temperature scale T_H. In this regime, F remains finite for any values of the spectator moduli \mu_I. We investigate extensively the case of one spectator modulus \mu_d corresponding to R_d, the radius-modulus field of an internal compactified dimension. We show that its thermal effective potential admits five phases, each of which can be described by a distinct but different effective field theory. For late cosmological times, the Universe is attracted to a "Radiation-like evolution" with M(t) ~ T(t)~ 1/a(t)~ t^{-2/d}. The spectator modulus \mu(t) is stabilized either to the stringy enhanced symmetry point where R_d=1, or fixed at an arbitrary constant \mu_0>T,M. For arbitrary boundary conditions at some initial time, t_E, \mu(t) may pass through more than one effective field theory phase before its final attraction.Comment: 60 pages, 1 figur
    • …
    corecore