research

Zero-temperature Phase Diagram For Strongly-Correlated Nanochains

Abstract

Recently there has been a resurgence of intense experimental and theoretical interest on the Kondo physics of nanoscopic and mesoscopic systems due to the possibility of making experiments in extremely small samples. We have carried out exact diagonalization calculations to study the effect of the energy spacing Δ\Delta of the conduction band on the ground-state properties of a dense Anderson model nanochain. The calculations reveal for the first time that the energy spacing tunes the interplay between the Kondo and RKKY interactions, giving rise to a zero-temperature Δ\Delta versus hybridization phase diagram with regions of prevailing Kondo or RKKY correlations, separated by a {\it free spins} regime. This interplay may be relevant to experimental realizations of small rings or quantum dots with tunable magnetic properties.Comment: 8 pages, 3 figures. J. Appl. Phys. (in press

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 25/03/2019