489 research outputs found
Richness-abundance relationships for zooplankton in ballast water: temperate versus Arctic comparisons
Species richness and abundance are two commonly measured parameters used to characterize invasion risk associated with transport vectors, especially those capable of transferring large species assemblages. Understanding the relationship between these two variables can further improve our ability to predict future invasions by identifying conditions where high-risk (i.e. species-rich or high abundance or both) and low-risk (i.e. species-poor and low abundance) introduction events are expected. While ballast water is one of the best characterized transport vectors of aquatic non-indigenous species, very few studies have assessed its magnitude at high latitudes. We assessed the arrival potential of zooplankton via ballast water in the Canadian Arctic by examining species richness, total abundance, and the relationship between the two parameters for zooplankton in ships from Europe destined for the Arctic, in comparison with the same parameters for ships bound for Atlantic Canada and the Great Lakes. In addition, we examined whether species richness and/or total abundance were influenced by temperature change and/or ballast water age for each shipping route. We found that species richness and total abundance for Arctic and Great Lakes ships were significantly lower than those for Atlantic ships. Differences in species richness and total abundance for ships utilizing different shipping routes were mostly related to ballast water age. A significant species richness–total abundance relationship for Arctic and Great Lakes ships suggests that these parameters decreased proportionately as ballast water aged. In contrast, the absence of such a relationship for Atlantic ships suggests that decreases in total abundance were accompanied by little to no reduction in species richness. Collectively, our results indicate that the arrival potential of zooplankton in ballast water of Arctic ships may be lower than or similar to that of Atlantic and Great Lakes ships, respectively
The effect of sewage on uptake of inorganic nitrogen and carbon by natural populations of marine phytoplankton
The short-term effect of sewage effluent on nitrogen and carbon productivity of natural marine phytoplankton obtained near two California outfalls has been studied. Uptake of ammonium was shown to be inhibited at much lower effluent concentrations than was carbon uptake. Since the populations studied were shown to exhibit Michaelis-Menten kinetics for ammonium uptake, a precise measurement of inhibition could be obtained. The results have immediate application since the phytoplankton populations of the area studied have been shown previously to be nitrogen limited
Separation strategies for invertebrate dormant stages contained in sediment
To accurately assess community composition of invertebrates, both active and dormant life stages should be considered. Dormant stages are typically produced as a strategy to overcome inhospitable environmental conditions and can also facilitate species dispersal. While they often sink and accumulate in sediment of natural habitats forming ‘egg banks,’ dormant stages are also found in the sediments accumulated in ships’ ballast tanks. Recent studies have used 2 different methods to separate dormant stages from ballast sediment to assess invasion risk associated with ballast tanks: the colloidal silica sol Ludox HS 40 and sugar flotation (i.e. the Onbé-Marcus method). It has been assumed that the Ludox HS 40 method is most effective for separation but reduces dormant stage viability whereas sugar flotation has lower separation efficacy but higher resulting viability. We conducted a comparative assessment of the 2 methods by separating dormant stages from 160 ballast sediments and examining resulting abundance counts, hatching results, DNA extractions and PCR amplifications. We found no difference in the results between the methods. The financial cost of sugar flotation is lower than that of Ludox HS 40, and costs can be further reduced by using only 1 method instead of both due to lower labour costs, particularly for a large number of samples
Clinical selection strategies to identify ischemic stroke patients with large anterior vessel occlusion: results from SITS-ISTR (Safe Implementation of Thrombolysis in Stroke International Stroke Thrombolysis Registry)
Background and Purpose—The National Institutes of Health Stroke Scale (NIHSS) correlates with presence of large anterior vessel occlusion (LAVO). However, the application of the full NIHSS in the prehospital setting to select patients eligible for treatment with thrombectomy is limited. Therefore, we aimed to evaluate the prognostic value of simple clinical selection strategies.
Methods—Data from the Safe Implementation of Thrombolysis in Stroke International Stroke Thrombolysis Registry (January 2012–May 2014) were analyzed retrospectively. Patients with complete breakdown of NIHSS scores and documented vessel status were included. We assessed the association of prehospital stroke scales and NIHSS symptom profiles with LAVO (internal carotid artery, carotid-terminus or M1-segment of the middle cerebral artery).
Results—Among 3505 patients, 23.6% (n=827) had LAVO. Pathological finding on the NIHSS item best gaze was strongly associated with LAVO (adjusted odds ratio 4.5, 95% confidence interval 3.8–5.3). All 3 face–arm–speech–time test (FAST) items identified LAVO with high sensitivity. Addition of the item gaze to the original FAST score (G-FAST) or high scores on other simplified stroke scales increased specificity. The NIHSS symptom profiles representing total anterior syndromes showed a 10-fold increased likelihood for LAVO compared with a nonspecific clinical profile. If compared with an NIHSS threshold of ≥6, the prehospital stroke scales performed similarly or even better without losing sensitivity.
Conclusions—Simple modification of the face–arm–speech–time score or evaluating the NIHSS symptom profile may help to stratify patients’ risk of LAVO and to identify individuals who deserve rapid transfer to comprehensive stroke centers. Prospective validation in the prehospital setting is required
Aging in a Two-Dimensional Ising Model with Dipolar Interactions
Aging in a two-dimensional Ising spin model with both ferromagnetic exchange
and antiferromagnetic dipolar interactions is established and investigated via
Monte Carlo simulations. The behaviour of the autocorrelation function
is analyzed for different values of the temperature, the waiting
time and the quotient , and being the
strength of exchange and dipolar interactions respectively. Different
behaviours are encountered for at low temperatures as is
varied. Our results show that, depending on the value of , the dynamics
of this non-disordered model is consistent either with a slow domain dynamics
characteristic of ferromagnets or with an activated scenario, like that
proposed for spin glasses.Comment: 4 pages, RevTex, 5 postscript figures; acknowledgment added and some
grammatical corrections in caption
Dipolar interaction between two-dimensional magnetic particles
We determine the effective dipolar interaction between single domain
two-dimensional ferromagnetic particles (islands or dots), taking into account
their finite size. The first correction term decays as 1/D^5, where D is the
distance between particles. If the particles are arranged in a regular
two-dimensional array and are magnetized in plane, we show that the correction
term reinforces the antiferromagnetic character of the ground state in a square
lattice, and the ferromagnetic one in a triangular lattice. We also determine
the dipolar spin-wave spectrum and evaluate how the Curie temperature of an
ensemble of magnetic particles scales with the parameters defining the particle
array: height and size of each particle, and interparticle distance. Our
results show that dipolar coupling between particles might induce ferromagnetic
long range order at experimentally relevant temperatures. However, depending on
the size of the particles, such a collective phenomenon may be disguised by
superparamagnetism.Comment: 11 pages, 5 figure
In situ hatching of invertebrate diapausing eggs from ships’ ballast sediment
Ships that enter the Great Lakes laden with cargo carry only residual ballast water and sediment in ballast tanks. These ships are designated ‘no ballast on board’ (NOBOB) and constitute > 90% of inbound traffic. We conducted in situ experiments using emergence traps to assess the viability and the introduction potential of invertebrate diapausing stages present in ships’ ballast sediment. All trials commenced while vessels operated on the lower lakes (Erie, Ontario) and were completed 6–11 days later at ports on the upper lakes (Michigan, Lake Superior). Eight trials were conducted on four ships using five different ballast sediments. Hatching was observed on every ship, although not from all sediments on all ships. Overall hatch rates were very low (0.5 individuals per 500 g sediment), typically involving activation of < 0.05% of total eggs present. Five species of rotifers and copepod nauplii were hatched from ballast sediments, although only one or two species typically hatched from any one sediment. Results of this study indicate that hatching of diapausing eggs contained in ballast sediment of NOBOB ships poses a relatively low risk of invasion to the Great Lakes. However, as reproduction may occur in tanks, and non-indigenous species may be involved in numerous introduction events, the risk posed by this vector is small but potentially important. While dormancy is a characteristic enabling enhanced survival during transportation in ballast tanks, it becomes a hindrance for introduction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72804/1/j.1366-9516.2005.00150.x.pd
Predatory ability and abundance forecast the ecological impacts of two aquatic invasive species
Characterising interspecific interaction strengths, combined with population abundances of prey and their novel predators, is critical to develop predictive invasion ecology. This is especially true of aquatic invasive species, which can pose a significant threat to the structure and stability of the ecosystems to which they are introduced. Here, we investigated consumer-resource dynamics of two globally-established aquatic invasive species, European green crab (Carcinus maenas) and brown trout (Salmo trutta). We explored the mediating effect of prey density on predatory impact in these invaders relative to functionally analogous native rock crab (Cancer irroratus) and Atlantic salmon (Salmo salar), respectively, feeding on shared prey (Mytilus sp. and Tenebrio molitor, respectively). We subsequently combined feeding rates with each predator's regional abundance to forecast relative ecological impacts. All predators demonstrated potentially destabilising Type II functional responses towards prey, with native rock crab and invasive brown trout exhibiting greater per capita impacts relative to their trophic analogues. Functional Response Ratios (attack rates divided by handling times) were higher for both invasive species, reflecting greater overall per capita effects compared to natives. Impact projections that incorporated predator abundances with per capita effects predicted severe impacts by European green crabs. However, brown trout, despite possessing higher per capita effects than Atlantic salmon, are projected to have low impact owing to currently low abundances in the sampled watershed. Should brown trout density increase sixfold, we predict it would exert higher impact than Atlantic salmon. Such impact-forecasting metrics and methods are thus vital tools to assist in the determination of current and future adverse impacts associated with aquatic invasive species
Ferromagnetism and Temperature-Driven Reorientation Transition in Thin Itinerant-Electron Films
The temperature-driven reorientation transition which, up to now, has been
studied by use of Heisenberg-type models only, is investigated within an
itinerant-electron model. We consider the Hubbard model for a thin fcc(100)
film together with the dipole interaction and a layer-dependent anisotropy
field. The isotropic part of the model is treated by use of a generalization of
the spectral-density approach to the film geometry. The magnetic properties of
the film are investigated as a function of temperature and film thickness and
are analyzed in detail with help of the spin- and layer-dependent quasiparticle
density of states. By calculating the temperature dependence of the
second-order anisotropy constants we find that both types of reorientation
transitions, from out-of-plane to in-plane (``Fe-type'') and from in-plane to
out-of-plane (``Ni-type'') magnetization are possible within our model. In the
latter case the inclusion of a positive volume anisotropy is vital. The
reorientation transition is mediated by a strong reduction of the surface
magnetization with respect to the inner layers as a function of temperature and
is found to depend significantly on the total band occupation.Comment: 10 pages, 8 figures included (eps), Phys Rev B in pres
A Monte Carlo study of the three-dimensional Coulomb frustrated Ising ferromagnet
We have investigated by Monte-Carlo simulation the phase diagram of a
three-dimensional Ising model with nearest-neighbor ferromagnetic interactions
and small, but long-range (Coulombic) antiferromagnetic interactions. We have
developed an efficient cluster algorithm and used different lattice sizes and
geometries, which allows us to obtain the main characteristics of the
temperature-frustration phase diagram. Our finite-size scaling analysis
confirms that the melting of the lamellar phases into the paramgnetic phase is
driven first-order by the fluctuations. Transitions between ordered phases with
different modulation patterns is observed in some regions of the diagram, in
agreement with a recent mean-field analysis.Comment: 14 pages, 10 figures, submitted to Phys. Rev.
- …