218 research outputs found

    An overview of snow photochemistry: Evidence, mechanisms and impacts

    Get PDF
    It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively shallow boundary layer. Field and laboratory experiments have determined that the origin of the observed NO x flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future

    An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts

    Get PDF
    It has been shown that sunlit snow and ice plays an important role in processing atmospheric species. Photochemical production of a variety of chemicals has recently been reported to occur in snow/ice and the release of these photochemically generated species may significantly impact the chemistry of the overlying atmosphere. Nitrogen oxide and oxidant precursor fluxes have been measured in a number of snow covered environments, where in some cases the emissions significantly impact the overlying boundary layer. For example, photochemical ozone production (such as that occurring in polluted mid-latitudes) of 3-4 ppbv/day has been observed at South Pole, due to high OH and NO levels present in a relatively small boundary layer. Field and laboratory experiments have determined that the origin of the observed NOx flux is the photochemistry of nitrate within the snowpack, however some details of the mechanism have not yet been elucidated. A variety of low molecular weight organic compounds have been shown to be emitted from sunlit snowpacks, the source of which has been proposed to be either direct or indirect photo-oxidation of natural organic materials present in the snow. Although myriad studies have observed active processing of species within irradiated snowpacks, the fundamental chemistry occurring remains poorly understood. Here we consider the nature of snow at a fundamental, physical level; photochemical processes within snow and the caveats needed for comparison to atmospheric photochemistry; our current understanding of nitrogen, oxidant, halogen and organic photochemistry within snow; the current limitations faced by the field and implications for the future

    Dynamic linkages between stock markets : the effects of crises and globalization

    Get PDF
    This paper investigates changes in the dynamics of linkages between selected national stock markets during the period 1995–2009. The analysis focuses on the possible effects of globalization and differences between crisis and non-crisis periods. We model the dynamics of dependencies between the series of daily returns on selected stock indices over different time periods, and compare strength of the linkages. Our tools are dynamic copula models and a formal sequential testing procedure based on the model confidence set methodology. We consider two types of dependencies: regular dependence measured by means of the conditional Spearman’s rho, and dependencies in extremes quantified by the conditional tail dependence coefficients. The main result consists of a collection of rankings created for the considered subperiods, which show how the mean level of strength of the dependencies have been changing in time. The rankings obtained for Spearman’s rho and tail dependencies differ, which allows us to distinguish between the results of crises and the effect of globalization.info:eu-repo/semantics/publishedVersio

    Taxing High-Income Earners: Tax Avoidance and Mobility

    Full text link
    corecore