48 research outputs found

    Celecoxib does not appear to affect prosthesis fixation in total knee replacement: A randomized study using radiostereometry in 50 patients

    Get PDF
    Background and purpose After joint replacement, a repair process starts at the interface between bone and cement. If this process is disturbed, the prosthesis may never become rigidly fixed to the bone, leading to migration—and with time, loosening. Cox-2 inhibitors are widely used as postoperative analgesics, and have adverse effects on bone healing. This could tamper prosthesis fixation. We investigated whether celecoxib, a selective Cox-2 inhibitor, increases prosthesis migration in total knee replacement (TKR)

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage

    Adherence of hip and knee arthroplasty studies to RSA standardization guidelines

    Get PDF
    Peer reviewe

    Comparison of cementing techniques of the tibial component in total knee replacement

    No full text
    A few studies have shown that cementing the stem enhances fixation of the tibial baseplate in total knee replacement (TKR). Even the horizontal technique has been shown to provide good fixation. We used radiostereometry to study migration of the tibial component in 30 knees operated with Profix TKR. The knees were randomised for either complete (both under the baseplate and around the stem) or horizontal (only under the baseplate) cementing of the tibial component. At two years the tibial baseplate rotated externally a median of 0.18° in the uncemented stem group and internally a median of 0.23° in the cemented stem group. The tibial baseplate subsided 0.14 mm in the cemented stem group, and no translation was seen in the uncemented stem group. The differences in migration were small and probably without clinical significance. The findings do not favour either of the cementing techniques in TKR
    corecore