3,563 research outputs found

    Comparison of jet Mach number decay data with a correlation and jet spreading contours for a large variety of nozzles

    Get PDF
    Small-scale circular, noncircular, single- and multi-element nozzles with flow areas as large as 122 sq cm were tested with cold airflow at exit Mach numbers from 0.28 to 1.15. The effects of multi-element nozzle shape and element spacing on jet Mach number decay were studied in an effort to reduce the noise caused by jet impingement on externally blown flap (EBF) STOL aircraft. The jet Mach number decay data are well represented by empirical relations. Jet spreading and Mach number decay contours are presented for all configurations tested

    Low frequency noise in a quiet, clean, general aviation turbofan engine

    Get PDF
    A quiet, clean, general aviation, turbofan engine was instrumented to measure the fluctuating pressures in the combustor, turbine exit duct, engine nozzle and the far field. Both a separate flow nozzle and an internal mixer nozzle were tested. The fluctuating pressure data are presented in overall pressure and power levels and in spectral plots. The combustor data are compared to recent theory and found to be in excellent agreement. The results indicate that microphone correction procedures for elevated mean pressures are questionable. Ordinary coherence function analysis suggests the presence of an additional low frequency noise source downstream of the turbine that is due to the turbine itself. Low frequency narrowband data and coherence function analysis are presented

    Peak axial-velocity decay with multi-element rectangular and triangular nozzles

    Get PDF
    The aircraft noise created by the impingement of engine exhaust jet of STOL aircraft with externally blown flaps is discussed. It was determined that the jet-flap interaction noise can be lowered by reducing the impinging velocity of the jet. The reduction must occur at a specific distance from the flap to be effective. The peak axial-velocity decay obtained with rectangular and triangular single element mixer nozzles is presented. Equations are developed for estimating the peak axial velocity decay curves for a wide range of nozzle configurations

    Automatic speech recognition research at NASA-Ames Research Center

    Get PDF
    A trainable acoustic pattern recognizer manufactured by Scope Electronics is presented. The voice command system VCS encodes speech by sampling 16 bandpass filters with center frequencies in the range from 200 to 5000 Hz. Variations in speaking rate are compensated for by a compression algorithm that subdivides each utterance into eight subintervals in such a way that the amount of spectral change within each subinterval is the same. The recorded filter values within each subinterval are then reduced to a 15-bit representation, giving a 120-bit encoding for each utterance. The VCS incorporates a simple recognition algorithm that utilizes five training samples of each word in a vocabulary of up to 24 words. The recognition rate of approximately 85 percent correct for untrained speakers and 94 percent correct for trained speakers was not considered adequate for flight systems use. Therefore, the built-in recognition algorithm was disabled, and the VCS was modified to transmit 120-bit encodings to an external computer for recognition

    Insight into the accuracy of COVID-19 beliefs predicts behavior during the pandemic

    Get PDF

    Hydroxymethylation Influences on Intestinal Epithelial Cells in Health and Disease

    Get PDF
    Epigenetics describes modifications that affect gene expression that are not encoded within the DNA sequence. DNA methylation is the longest appreciated epigenetic modification and has been accepted to play a critical role in maintaining euchromatin and silencing genes. Recently, a separate and distinct covalent modification has been recognized; hydroxymethylation, which has been associated with increased gene expression as opposed to gene silencing. However, traditional methods to study DNA methylation also recognized hydroxymethylation and did not distinguish between these two distinct DNA covalent modifications. Furthermore, TET enzymes have been identified to play a critical role in active hydroxymethylation of previously methylated cytosine residues and may further result in conversion to cytosine. TET1 plays a critical role in intestinal epithelial differentiation and development, and this is also correlated with increased hydroxymethylation in terminally differentiated epithelial cells. Colon cancer, which arises from the colonic epithelium, exhibits decreased hydroxymethylation and altered gene expression
    corecore