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Automatic speech recognition (ASR) is being investigated at
NASA-Ames Research Center as part of a broad program in Flight Manage-
ment Systems research. The goal of the Flight Management program is
to develop a base of practical knowledge and experience concerning
pilot information and control requirements for future highly automated
commercial flight systems [1]. The motivation for this research is
concern that the air traffic environment is becoming highly congested
and will eventually become saturated unless some means is found to im-
prove the overall precision and scheduling of flights, particularly in
the dense terminal area.

Various display and control devices are being investigated
as aids to the crew of future aircraft. Potential information displays
include multifunction, area-navigation, moving map, collision warning,
traffic situation, ground proximity, system status, and various atti-
tude displays. Virtually all of these displays involve selection fea-
tures such as orientation, scaling, symbology, or numerical parameter
options that may be left to the pilot to determine. Option selection
will be determined in part by the ease or difficulty that the pilot
will have in making his choices, and the degree to whiteh these activi-
ties may interfere with more important pilot functions. Speech tech-
nology offers opportunities for increasing the effectiveness of pilot-
system interaction, and both speech recognition and speech synthesis
are being considered: the former as a potential input alternative to
numerous and complex keyboard arrangements, and the latter as an optional
output medium for presenting flight-critical information. This paper
describes speech recognition work at NASA-Ames Research Center. Near-
term ASR testing and evaluation in a motion simulator, and subsequent
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(ties are resolved arbitrarily) . Assuming that the "vocabulary words are
equally likely to occur and that all misclassifications are equally costly,
the maximum likelihood decision is obtained by using as the discriminant
functions

gi(X) = p(XJi), i - 1, ..... , N.

That is, the ith discriminant function is the likelihood of pattern, X,
with respect to category, i. Since the patterns are 120-bit binary vectors,
and assuming the pattern components to be statistically independent, then

T *5 rt

g. (X) = / t p(x. |i) , i = 1, . . . , N, where
/j=l\ 3

X = (x.., . . . ., X-IOQ) an^ eacn x. is 0 or 1.

For computational purposes, the discriminant functions actually
used are

g (X) = log T̂ T-P(X ji) --£ log p(x |i).
J J

The logarithms, which are computer by table look-up, do not affect the
classification since the log function is monotonic-increasing.

It remains to state how the probabilities, p(x.ji) are found.
This is done in advanced by collecting training samples, Ŷ -'̂ , . . . yi'm

for each vocabulary word, i, and using the following as estimates for the
probabilities:

M . .

2 ̂ 'k
. .... k=l J

p(x. - l|x) =

and p(x. = o|i) = 1 - p(x. = l|i).

The number of training samples, M, is usually between 10 and 25,

Three additional features have been added to the maximum likeli-
hood algorithm. The first derives from the fact that even practiced
speakers change some of their pronunciations slightly over time. Compensa-
tion from these changes may be accomplished by updating the discriminant
function probabilities. In situations where the algorithm receives feed-
back stating the correctness of its classifications, then if pattern, Z,
is correctly classified, as belonging to category, m, the probabilities
p(x = l|m)are replaced by

a*p(x. = l|m) + (l-a)*z. , for 0<a<l and j=l, . . ./ 120.
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This exponential smoothing technique can be used to make the algorithm
more or less responsive to changes in pronunciation by varying the
value of the variable a. A typical value is 0.94.

A second feature allows the algorithm to "reject" utterances
for which classification is uncertain, rather than risk misclassification.
The measure of uncertainty is a simple one: the ratio of the second
highest score to the highest. The nearer the ratio to 1.0, the more
uncertain the classification. The threshold at which rejection takes
place is a parameter of the algorithm.

Finally, in many flight systems applications, the command
language spoken by the user of the speech recognition system has a
simple (finite-state) syntax. For example, after the command "landing
gear," the only meaningful utterances might be "up," "down," and "status."
By doing recognition only against the subset of vocabulary words that
is valid at each point in a command string, both the accuracy and ef-
ficiency of the algorithm are increased. A tree-like structure is used
to associate with each vocabulary word that set of words that can fol-
low it in a command string. As each word is recognized, the result is
used to guide the traversal of the tree.

The current version of the Ames speech recognition system
runs in real time on a PDF 11/10 computer. Encoding an utterance into
120-bit form requires about 0.3 seconds, and recognition requires an
additional 0.2 seconds for small vocabularies or subsets.

RECOGNITION ALGORITHM EVALUATION

A standard set of data was needed for evaluation of the
various recognition algorithms. To meet this requirement, 20 untrained
male speakers used the 10-word digit vocabulary to provide a total of
1250 utterances for each speaker. The data for each speaker were col-
lected in 5 blocks of 250 utterances each during a single 1 hour 30
minute session.

During data collection, the 120-bit pattern derived from each
utterance was transmitted directly from the VCS to a PDP-12 computer
for storage on magnetic tape. All data were later transferred to a
Xerox Sigma 9 computer where the various recognition algorithms were
used to process the data. During data processing, the first block of
data for each speaker was used to train the recognition software and
then recognition was attempted on the remaining 4 blocks of data for
that speaker; thus 1,000 recognition utterances were processed for
each speaker. The same data were repeatedly processed to provide
independent evaluation of each recognition algorithm. The results are
shown in Table 1.
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The recognition algorithms in Table 1 are listed in order of
increasing efficiency. The first algorithm, VCS(5) requires 5 training
samples of each command, and simulates the hard-wired algorithm of the
VCS (for comparison with initial VCS test results). This least effective
recognition algorithm correctly classified 87.6% of 20,000 utterances.
In contrast, 99.9% of 19,000 utterances (1000 utterances were rejected)
were correctly classified by the most effective algorithm, designated
SUBMAX(25) REJ (incorporating all the features discussed above and trained
on 25 samples of each word). Thus a mean improvement of 12.3% correct
was gained over the basic recognition technique. Syntax was not involved
in any of the 10-word testing; all recognition was done against the entire
vocabulary.

The greatest sequential improvement, 7.4% correct, was gained
by use of the algorithm designated SW(5), a maximum likelihood algorithm
without rejection or updating, and trained on 5 samples of each word.
Doubling the size of the training data set with the same algorithm, SW(10),
produced an additional gain of 1.9% correct. Use of rejection and updating
with the same size training data set, algorithm SUBMAX(IO), provided a
further gain of 2.5% correct, and use of all available training data,
algorithm SUBMAX(25), provided an additional gain of 0.1% correct. By
using algorithm SUBMAX(25)REJ, which rejected the 5% of utterances with
the greatest uncertainty of classification, an additional 0.4% correct
was gained. (The value of the rejection threshold that produced 5%
rejection was determined empirically.)

Both the standard deviation and the range of mean percentage
correct (speaker with highest mean minus speaker with lowest mean) con-
sistently decreased as increasingly efficient algorithms were used. The
standard deviation decreased from a maximum of 6.4% to a minimum of 0.1%
correct, and the range decreased from a maximum of 29.9% to a minimum of
0.4% correct. Large relative reductions in standard deviation (from 6.4%
to 2.0% correct) and range (29.9% to 7.5% correct) resulted from use of
the SW95) algorithm. The largest relative reductions in standard devia-
tion (from 1.7% to 0.3% correct) and range (from 5.5% to 1.0% correct)
resulted from use of the SUBMAX(IO) algorithm (with dynamic updating).

The principal achievement of the Ames recognition algorithm
development work is that recognition accuracy for the least successful of
the 20 speakers was improved to 98.7% correct without rejecting any of
his utterances. For successful flight applications, a recognition system
must perform well for even the least proficient speaker.

Since asking a pilot to repeat a command seems preferable to
misclassification [3], the ability to reject in cases of uncertainty
is desirable. With 5% rejection, recognition accuracy was further
improved to 99.6% correct for the least proficient speaker.
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After achieving a high, level of recognition accuracy for the
10-word digit vocabulary, it was desirable to evaluate recognition
accuracy of the system with a larger vocabulary suitable for flight
system use.

RECOGNITION ALGORITHM ACCURACY ON A 100-COMMAND VOCABULARY

Although a vocabulary larger than 10 commands would be required
for most flight systems applications, only a few of the commands may be
needed at any given time during a mission. The commands may be assigned
to different vocabulary subsets according to their sequential use in the
mission. The pilot would have access to any command at all times simply
by executing the proper access sequence for that command. For example,
a 58-command vocabulary selected for use in a fixed-base flight simula-
tor mission consists of 17 different vocabulary subsets; the smallest
subset contains 3 commands, and the largest contains 12. A syntax
structure was imposed to develop branching chains of command by sequen-
tially combining appropriate commands from various subsets to yield a
total of more than 46,000 unique and potentially meaningful sequences
(from the original 58-command vocabulary). In addition to increasing
the number of unique command possibilities, the syntax structuring method
also reduces the number of active commands in the recognition set (min.
= 3; max. =12) at any given point in time, thus reducing the complexity
of the recognition problem and increasing the probability of maintaining
a high level of recognition accuracy over the entire mission simulation
[4].

To evaluate recognition accuracy on a large vocabulary, a
100-command flight vocabulary constructed for use in a full mission
(take-off-to-landing) simulation was selected. The 100-command vocabu-
lary is shown in Table 2.

A group of ten untrained male speakers each used the 100-
command vocabulary to provide 25 training utterances (used to train the
recognition algorithms) and 100 recognition utterances of each command,
a group total of 100,000 recognition utterances.

Overall Processing Results

Recognition results for overall processing without the use of
syntax are shown in Table 3. Recognition accuracy for the entire voca-
bulary was 93.2% correct without rejection and 95.7% correct when 5%
of the utterances were rejected. Results for the 10 digits within the
overall processing are shown for comparison with previous 10-digit
vocabulary results.

The command language syntax for this vocabulary groups the
commands into 15 subsets ranging in size from 3 to 10 commands as shown
in Table 4.
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TABLE 4

FREQUENCY OF SUBSET SIZES:
100-COMMAND FLIGHT SIMULATION VOCABULARY

SUBSET SIZE

3 WORDS

4 WORDS

5 WORDS

SWORDS

7 WORDS

8 WORDS

SWORDS

10 WORDS

FREQUENCY

2

3

1

3

1

5

TOTAL = 15 SUBSETS
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Subset Processing Results

Recognition results for subset processing are shown in Table 5.
For the entire vocabulary, subset recognition accuracy without rejection
is 98.6% correct, and is. higher than the corresponsing overall processing
result by 5.4% correct, while the range has decreased from 7.5% to 1.8%
correct. With 5% rejection, subset recognition accuracy is increased by
1.0% correct to 99.6% correct, and the range is decreased to 0.5% correct.
Results for the 10 digits within the subset processing are shown for com-
parison with previous 10-digit results.

Tables 6, 7, and 8 show the commands, subset processing results
without rejection, and rank order of recognition accuracy for each of
the 15 subsets. The subset processing results shown in Tables 6, 7, and
8 are summarized in Table 9, together with corresponding results from the
overall processing.

During overall processing, recognition was done against the
entire 100-command vocabulary. (During subset processing, the recognition
decision for each utterance was based on comparison to only 3, 4, 5, 6,
9, or 10 commands, depending upon the size of the active subset.) The
overall processing results shown in Table 9 were then obtained by simply
combining and averaging individual command results by subset group.
(The subset groups are shown in Tables 6, 7, and 8.)

The rank order results for subset processing shown in Table 9
are in general agreement with the expectation that recognition accuracy
will decrease as subset size is increased. When recognition accuracy for
a subset of small size was considerably below the levels obtained with
larger subsets, the disparity was usually attributable to frequent mis-
classification between two commands in the small subset. For example,
although Subset L contains only 4 commands, the resulting mean percentage
correct by subsetting was lower than corresponding results for eight sub-
sets of larger size. The primary reason for error within Subset L was
misclassification between the commands "alpha" and "delta" (see Table 7).

Digit Subset Results

The 10-digit subset, subset D, ranged 14th of the 15 subsets
in recognition accuracy by subset processing and 13th by overall process-
ing. Of the five 10-command subsets, subset D recognition accuracy ranked
4th by both processing methods. These results demonstrate that the 10
digits comprise a relatively difficult 10-word ASR vocabulary. Since
accurate recognition of the 10 digits is essential for most potential
flight systems applications, the digits appear to be an excellent small
vocabulary for use in recognition accuracy evaluation of an ASR system
proposed for flight systems use..
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TABLE 6

SUBSETS FOR 100-COMMANO FLIGHT SIMULATION VOCABULARY

MASTER PAGE (LEVEL 1)
SUBSET A (6 COMMANDS)

7. AUTOPILOT
15. CHART
16. CHECKLIST
19. COMMUNICATION
35. FLIGHT PLAN
60. NAVIGATION

AUTOPILOT COMMANDS (L2)
SUBSET B (4)

98.7% CORRECT
RANK* 9

4. ALTITUDE
43. HEADING
83. SPEED
96. VERTICAL

99.15% CORRECT
RANK* 3.5

NAVIGATION COMMANDS (L2)
SUBSET C (4) .__

2. ARRIVAL TIME
56. M.L.S.
59. NAVAUTO
97. V.O.R.

98.725% CORRECT
RANK"7

COMMUNICATION AND
AUTOPILOT COMMANDS (L2)
SUBSET D (10)

28. EIGHT
34. "FIVE
37. FOUR
62. NINE
66. ONE
79. SEVEN
80. SIX
86. THREE
90. TWO

100. ZERO

CHART COMMANDS (L2)
SUBSET E (6)

98.21% CORRECT
RANK -14

1. AIRPORTS
54. MAP
72, PREDICTOR'
75. SCALE
84. TERRAIN
94. VELOCITY

99.03% CORRECT
RANK-5
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TABLE 7

SUBSETS FOR 100-COMMAND FLIGHT SIMULATION VOCABULARY

AUTOPILOT: ALTITUDE, HEADING, AND
SPEED COMMANDS (L3)
SUBSET F (9 COMMANDS)

98.48% CORRECT
RANK = 10

44. HOLD
46. HUNDRED
51. INPUT
58. MINUS
69. PLUS
70. POINT
•73. REFERENCE
77. SELECT
85. THOUSAND

AUTOPILOT: VERTICAL COMMANDS (L3)
SUBSET G (6)

99.15% CORRECT
RANK = 3.5

18. CLIMB
24. DESCEND
45. HORIZONTAL
48. IN
67. OUT
89. TURN

NAVIGATION: M.L.S. COMMANDS (L3)
SUBSET H (5)

14. CHANNEL
30. ENGAGE
40. GL1DESLOPE
64. OFF
65. ON

98.86% CORRECT
RANK = 6

NAVIGATION: V.O.R. COMMANDS (L3)
SUBSET I (3)

21. COURSE
38. FREQUENCY
47. I.D.

99.53% CORRECT
RANK = 2

CHART: SCALE COMMANDS (L3)
SUBSET J (3) -_

52. LARGER
55. MASTER
81. SMALLER

99.7% CORRECT
RANK = 1

CHART: MAP COMMANDS (L3)
SUBSET K (10)

9758% CORRECT
RANK = 15

12. CENTER
26. DOWN
27. EAST
49. INDEX
53. LEFT
63. NORTH
74. RIGHT
82. SOUTH
92. UP
99. WEST

COMMUNICATION COMMANDS (OPTIONAL-
L2)
SUBSET L (4)

5. ALPHA
8. BETA

22, DELTA
39. GAMMA

98.4% CORRECT
RANK = 13
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TABLE 8

SUBSETS FOR 100-COMMAND FLIGHT SIMULATION VOCABULARY

NAVIGATION: NAV AUTO COMMANDS (L3)
SUSSET M (10 COMMANDS)

NAVIGATION: GENERAL COMMANDS (L4)
SUBSET 0 (10)

98.72% CORRECT
RANK-8

10. BY
11. CAPTURE
23. DEGRESS
36. FLY TO
50. INITIALIZE
57. MERGE
76. SECTOR
87. TIME
88. TRACK
98. WAYPOINT

NAVIGATION: ARRIVAL TIME COMMANDS
(L3)
SUBSET N (10)

9. BLANK
13. CHANGE
17. CLEAR
31. ENTER
32. ERROR
33. EXECUTE
41. GO
61. NEGATIVE
71. POSITIVE
95. VERIFY

98.47% CORRECT
RANK-11

3. AIRSPEED
6. AUTO

20. COUPLE
25. DISPLAY
29. EMERGENCY
42. GO AROUND
68. OVER
78. SET
91. UNDER
93. VECTOR

98.43% CORRECT
RANK -12
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Recognition accuracy and rank order results for the 10 digits
are shown in Table 10. Recognition accuracy was highest for "six" and
lowest for "five" by both subset and overall processing. Among individual
commands in the entire 100-command vocabulary, "six" ranked 11.5 in recog-
nition accuracy by subsetting and 2nd by overall processing. For compari-
son, "smaller" (Subset J) ranked 1st by subsetting (37th by overall) with
99.9% correct, and "waypoint" (Subset M) ranked 1st by overall processing
(11.5) by subsetting) with 98.3% correct. In contrast, the digit "five"
ranked 100th by both subsetting and overall processing. Thus differences
in recognition accuracy within the digit subset cover nearly the entire
range of results obtained over all 100 individual commands.

Within the digit subset, the most of the recognition misclassi-
fications in subset processing occurred between "five" and "nine".
Of the total misclassifications of "five" nearly 80% had been recognized
as "nine", while more than 80% of all misclassifications of "nine" had
been recognized as "five". For the digit subset, recognition accuracy
could be improved by having speakers pronounce "nine" as "niner" (they
did not do so in this study). Similar pronunciation changes could be
made in other subsets where misclassification between two commands
accounts for a high percentage of the total error. In some cases, a
new command should be substituted for one of the problem commands and
the evaluation process repeated.

The mean percentage difference in recognition accuracy between
subset and overall processing for each digit is shown in Table 11. The
relative cost of attempting to recognize a digit while protected within
its own subset vs. leaving it unprotected in the overall processing is
indicated by the value shown for each digit.

New vocabularies proposed for flight systems use may be evalu-
ated by the process described for evaluation of the 100-command vocabu-
lary. Thus any serious incompatibilities between commands within a
subset may be identified and corrected, and recognition accuracy for
the entire vocabulary can be determined prior to actual use in a flight
system.

Results of the 100-command vocabulary evaluation indicate that
recognition accuracy of the Ames speech recognition system is sufficiently
high to permit operational testing.

OPERATIONAL TESTING IN NOISE AND VIBRATION

Since both noise and vibration are present in flight environ-
ments and since both threaten to reduce the high levels of recognition
accuracy obtainable under laboratory conditions, a system recognition
accuracy evaluation is scheduled for several different conditions of
noise or vibration.
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TABLE 11

PERCENTAGE DIFFERENCES FOR DIGITS:
100-COMMAND VOCABULARY

SUBSET vs. OVERALL PROCESSING

DIGIT MEAN PERCENTAGE DIFFERENCE

SIX 1.5

TWO 1.9

ZERO 2.1

FOUR 3.5

ONE 4.2

THREE 5.1

NINE 8.8

SEVEN 10.5

EIGHT 12.2

FIVE 14.4
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To provide a more realistic test of the Ames ASR system than
would be obtained if speakers simply voiced commands in a noise or vi-
brating environment, voice command data will be collected while the test
subjects perform a continuous tracking task. Comparable keyboard entry
data will also be collected.

Background

During flight a pilot must perform a variety of tasks, most
of which may be assigned to one of two broad categories: (1) tracking,
e.g., following a glideslope or making a turn, and (2) system interac-
tion, e.g., setting an autopilot heading or changing a radio frequency.
The use of digital computers on board aircraft (primarily for automatic
subsystems control) is already a reality, and in future aircraft the role
of the computer will be large [1,5]. Thus tasks that involve interacting
with onboard avionics systems are increasingly becoming tasks of man-
computer interaction. Effective utilization of the computer's informa-
tion processing capabilities requires careful study and critical testing
to provide design guidelines for the man-computer interface. In parti-
cular, a crew member must be able to provide inputs in a manner that is

(1) accurate,
(2) tolerant of errors and updates,
(3) rapid enough to meet the demands of the task at hand,
(4) natural and convenient, so that use of the input system

does not add significantly to the user's workload, and
(5) interruptable.

Since speech has the potential for equaling or exceeding conventional
keyboard input capabilities in meeting these requirements [ 6], the opera-
tional testing is designed to assess the relative effectiveness of voice
and keyboard input systems in stationary, noisy, and vibrating environ-
ments.

Plan of Study

Pilots will act as test subjects and will perform a single-
axis compensatory tracking task while being exposed to various levels
of noise. While tracking, the pilots will concurrently make discrete
numerical data entries, upon command, using one of two input media:
voice or keyboard. Following completion of the required number of noise
evaluation test sessions, the pilots will perform the same tasks for an
equivalent number of test sessions under various levels of vibration.
The pilots will be selected from the general aviation, military, and air-
line pilot populations.

All noise and vibration test data will be collected in the
Ames Vertical Acceleration and Roll Device (VARD). The noise and
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vibration will simulate conditions occurring on board aircraft. Four noise
conditions will be tested:

(1) No Noise,
(2) Helicopter noise at 90 dB,
(3) Helicopter noise at 100 dB,
(4) Random ("white") noise at 100 dB.

For each pilot, no vibration testing will be imposed until all noise test-
ing has been completed. Four vibration conditions will then be simulated
and tested:

(1) No vibration,
(2) Smooth jet transport cruise,
(3) Rough jet transport cruise,
(4) Helicopter cruise.

For all test conditions, the primary performance measures will•
be tracking error and the accuracy and speed of voice and keyboard data
entries. Assessment of the relative effect on tracking performance of
making voice vs. keyboard entries under the various noise and vibration
conditions is of particular interest.

Depending upon initial noise and vibration test results, addi-
tional evaluation may be desirable for other noise or vibration conditions,
or combinations of noise and vibration. When favorable ASR system results
have been achieved under the noise and vibration conditions expected in
flight, the system will be ready for flight testing.

FLIGHT APPLICATIONS

The hardware requirements for a flyable ASR system are quite
different from the requirements for a laboratory system. Selection of a
hardware system that will be fully operative under a variety of flight
conditions is essential for later success in flight.

The Ames ASR Flight System

The primary component of this Ames ASR system is a Rolm 1603A
ruggedized military computer. The entire system is contained in a 7.6"
x 10.1" x 20.4" chassis and weighs about 60 Ibs. The system meets mili-
tary physical operating standards set by MIL-E-5400 Class II and MIL-E-
16400 Class I specifications with respect to operating temperature, vibra-
tion, shock, humidity, altitude, and radio frequency interference. It
contains 32,764 16-bit words of memory, central processor with extended
arithmetic unit, several general purpose input/output ports, and a micro-
processor-based speech input board. This board accepts microphone inputs
and performs shaping, spectral analysis, word boundary detection, nonlinear
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time normalization, and coding completely independent from the 1603A
processor. The 1603A accepts 128-bit patterns from the speech input board,
performs training and recognition functions, and directs overall control
of a flight experiment. For a single user, structured vocabularies of
up to 200 words may be accommodated.

Potential Flight Applications

Although the potential flight applications of ASR systems are
numerous, those applications that seem particularly desirable have general
characteristics that would allow the ASR system to (1) reduce the difficulty
(and risk) of performing high-wordload manual control procedures during
critical phases of flight, (2) minimize eye-hand coordination problems that
often accompany a heavy manual control burden, and (3) reduce visual time-
sharing requirements so that attention can remain focused outside the cock-
pit or upon a primary flight display for longer periods of time.- For
example, the selection and tuning of radio frequencies, a procedure that
often interferes with other essential manual tasks, could be controlled
by voice. Computer generated displays, including head-up displays,
could be controlled by voice rather than by conventional keyboard, thus
avoiding eye-hand coordination problems and allowing visual attention to
remain focused on the display. In addition, whenever command sequences or
numerical data entries must be (1) performed manually, (2) integrated with
other manual tasks, and (3) executed rapidly, e.g., a Navy P-3 sensor
operator's use of thumbwheel switches for numerical data entry, voice
commands have the potential for providing faster and more accurate perform-
ance, as well as being less disruptive of (and less disrupted by) other
manual task requirements [7].

Once selection of a specific ASR flight application has been
made and all hardware and software requirements have been met, full-
mission flight simulation testing is desirable prior to actual use in
flight.

Several candidate ASR flight applications are being considered
for in-flight evaluation of the Ames ASR Flight System. Three of these
potential applications have been selected for discussion.

Navy P-C3 Orion Pilot Application

During certain phases of anti-submarine patrol flights, Navy
P-3C aircraft must be flown at low altitude. While low altitude flight
is maintained, the pilot must select and execute command functions using
a 35-key keyset that is located to his right and slightly behind him. This
keyset location requires that the pilot turn his body towards the keyset
and direct his visual attention away from the outside visual scene and his
primary flight instruments while using the keyset. Use of the Ames
ASR Flight System, with a 34-command syntax-structured vocabulary consist-
ing of 11 subsets ranging in size from.2 to 14 commands would provide a
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command capability duplicating that of the keyset and would increase the
pilot's capability for rapid detection and correction of significant
deviations from the desired flight conditions during this time-critical
phase of flight.

Lt. Anthony Quartano, a Navy P-3C pilot, developed the proce-
dure used for selection of the voice command.vocabulary and designed the
command syntax in collaboration with the authors of this paper.

The speech recognition system would be implemented in parallel
with the pilot keyset in a P-3C aircraft for in-flight evaluation of
voice command system performance; thus comparable speed and accuracy data
could be collected by voice and by keyset, and access to normal keyset
functions would be available at all times.

Navy P-3C Sensor Station Operator Application

Sensor Station 1 and 2 operators on board Navy P-3C aircraft
use several different keysets and thumbwheel switch input sets to enter
data into a digital computer. During some missions, the desired rate of
information entry greatly exceeds the rate obtainable with current input
devices. Several Navy P-3C sensor operators based at Naval Air Station,
Moffett Field, CA, have collaborated with the authors of this paper to
evaluate potential ASR sensor station applications. Five specific appli-
cations were selected that would reduce an operator's manual workload and
permit more rapid execution of essential tasks. For example, use of voice
commands rather than thumbwheel switches for numerical data entry would
increase the maximum entry rate while reducing interference with other
concurrent manual tasks. Implementation of voice command functions would
be made in parallel with existing input hardware so that comparable in-
flight data could be collected by voice and by the conventional manual
input method, and to provide access to normal hardware functions at all
times.

Sufficient space is available in the Ames ASR Flight System
chassis to accommodate up to four speech input boards, allowing the system
to simultaneously process information from four different users. These
users may or may not share vocabularies and/or input functions. This multi-
user capability is made possible by the microprocessor-based speech input
boards which relieve the 1603A computer of a large percentage of the total
processing load. Thus the Ames ASR Flight System could easily process
information in parallel from both Sensor Stations 1 and 2 during flight.

Helicopter Pilot Application

Helicopters, with their high noise and vibration characteristics,
provide the most challenging and perhaps one of the most deserving flight
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environments for ASR applications. Because the manual control burden in
helicopters is typically quite heavy, the implementation of an on-board
ASR system could provide substantial benefits for increasing the
efficiency and safety of helicopter flight. For example, during heli-
copter missions where success may require operating the aircraft near its
operational boundaries, e.g.., in search, rescue, or evacuation missions,
the pilot could benefit from knowing how close he is to exceeding critical
system performance limits such as altitude, airspeed, or gross weight.
Given that an appropriate computational capability exists on the aircraft,
information such as hover ceilings, gross weight margins, engine performance
parameters, and range-of-flight estimates could be presented to the pilot
in response to his voice commands. The fact that in these situations the
pilot is in a high-workload manual control environment with inherent time-
stress recommends the application of speech technology. An ASR system
would not only allow the pilot to conveniently query the computational
system for specific critical information, but speech synthesis could also
be used to minimize the need for diversion of attention to a conventional
visual display.

At the present time, Ames Research Center has assumed the lead
role for NASA helicopter research, and applications such as this are being
actively pursued. Fortunately, a variety of helicopters will be available
for flight research in the near future, and in-house avionics groups are
working on developmental projects such as the example discussed above.
Accordingly, a very exciting and rewarding future is anticipated for this
kind of man-machine systems research.
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DISCUSSION

Dr. Edward Huff

Q: Jerry Wolf, BBN: In one of your slides, Clay, you presented some reco-
gnition results for the entire 100-word vocabulary and then for compari-
son the 10 digits. The 10 digits came out with a smaller recognition
score than the entire 100-word vocabulary. That seems a little
inconsistent to me. I don't see how the smaller vocabulary could have
come out with a significantly worse score than the 100. Do you have
any comments on why that happened?

A: Clay Coler: As I indicated when we went through the results, when
individual words were recognized over the entire vocabulary, some words
had quite high recognition accuracy. For example, the digit six was
recognized almost as well in the overall processing as it was by
subsetting. Other digits were quite poor, and in fact the digit
five was the poorest of all 100 commands. I think that the answer
is simply that the digits are relatively tough, no matter whether
they are protected in a subset or left unprotected in the overall
processing.

Q: Jerry Wolf; They are significantly worse than the recognizability
of that whole 100. They were relatively distinguishable.

A: Clay Coler; They are certainly significantly worse than other 10-
command vocabularies and we can see that when we artificially put
subsets together in the overall processing.

Bob Plummer; Maybe it wasn't clear that the ten words were still
recognized against the whole hundred, but he was showing you the result
of those ten particular words, the digits. So, that's how thay could
come out with a lower score.

Q: Mike Grady, Logicon: I have to say that the work the NASA has done on
trying to assess recognition accuracy is probably the most extensive
I've seen, and I really want to express to all of you appreciation for
that. I do have some questions on the experimental design or what-
ever you would like to call it. I guess I'll address this to you,
Bob. In your comparison with 20 speakers in the six different
training recognition strategies that you used, did you use the same
20 people when you went through each of the strategies, and also did
the speakers, when they were performing the experiment, get feedback
on the results that they were getting? I might point out that the
reason I'm asking this question is because we found that there is
really a phenomenon of learning how to talk to the boss, and it's a
thing that we've never looked at and I'm curious about your results.
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A: Bob Plummer; The idea there was to examine recognition algorithms
separately from the frontend or the initial digitization. So, all
the speaker did was say the right word at the right time. We would
then digitize that and record the digital version of the word on
tape. We did not do recognition at all on line. So the speaker
received absolutely no feedback as to whether he was right or wrong.
I mean for better or for worse, he didn't get it. What that gives us
may be slightly unrealistic in the sense that in an application he
probably would get feedback. On the other hand, it means that we
have absolute repeatability because we can just cram those digitized
words into any different recognition algorithm that we might want to
use. So we really were applying all the different algorithms to
exactly the same set of digitized data.

Q: John Markel Signal Technology; You talk about having 10-word
reference or twenty-five words. Would you describe your training
scenario? Whether that's taken at one setting or spaced over time.
How is that done?

A: Bob Plummer; These particular tests were all done in the following
way. The subject would see on a display the word or digit he would
be asked to pronounce at a given time. All these data were taken
sequentially, so in his first session he would provide us with twenty-
five training samples of each word, and we would do that by cycling
through the vocabulary, so he didn't say "waypoint" 25 times and then
"altitude" 25 times.. He-would cycle through 25 times. Then after
perhaps a short rest, he would go right on into the recognition.
This all took place in one day, and morie or less continuously through
time. So we weren't really facing problems of day to day variation.
Although I guess actually that is not completely true. Some of the
data collection did take place over several days. Let me ask Clay—
how many days were involved?

Clay Coler; For the 10-word vocabulary, all data were collected in
a single day. For the 100-command vocabulary, it was five days.
The first day was the training data day.

Bob Plummer; O.K., so what I said about the one day was right for
the 10 words. For the 100 words, it was over five days. Training
on the first day and recognition on the next four.

Q: Mary Herscher, Threshold Technology; I noticed on the slides and
tables of the digits subsets, I think ehree times they appeared.
One originally and two as subset-in your test, and there seemed to be
some inconsistency in terms of the accuracies that were posted among
the three. Would you comment on how this comes about?

A: Bob Plummer; I think that might be related to the original question
It might be better to have a look later, privately or in the published
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paper. The question has come up in the following way: We were
recognizing some times perhaps against only ten words, and that's
what we call subsetting. So there the 10 digits were recognized
only against other digits. At other times, we were recognizing over-
all . The digits were recognized against all 100 words but we
artificially extracted out of that the digit subset to see how well
those 10 words did as a group when compared to all 100 words. So
those two results might look kind of different, but in fact I
think we're consistent with what happened overall.

Q: Marv Herscher; I don't understand because I thought you said that the
second column you had on a couple of the tables were digit subsets
against each other. A true subset is a subset of words recognized
only against each other.

A: Bob Plummer: Right. It was done three ways. The first was only
the digit vocabulary. Then there was the big vocabulary with the
digits as a true subset. And a big vocabulary with digits versus
everything. Would you like me to put the slide back up?

Marv Herscher: Well, I can talk to you about it later.
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