14,349 research outputs found

    Novel Pressure Induced Structural Phase Transition in AgSbTe2_{2}

    Full text link
    We report a novel high pressure structural sequence for the functionally graded thermoelectric, narrow band gap semiconductor AgSbTe2_{2}, using angle dispersive x-ray diffraction in a diamond anvil cell with synchrotron radiation at room temperature. The compound undergoes a B1 to B2 transition; the transition proceeds through an intermediate amorphous phase found between 17-26 GPa that is quenchable down to ambient conditions. The pressure induced structural transition observed in this compound is the first of its type reported in this ternary cubic family, and it is new for the B1-B2 transition pathway reported to date. Density Functional Theory (DFT) calculations performed for the B1 and B2 phases are in good agreement with the experimental results.Comment: 4 pages, 3 figure

    Integration of security standards in DevOps pipelines: An industry case study

    Get PDF
    In the last decade, companies adopted DevOps as a fast path to deliver software products according to customer expectations, with well aligned teams and in continuous cycles. As a basic practice, DevOps relies on pipelines that simulate factory swim-lanes. The more automation in the pipeline, the shorter a lead time is supposed to be. However, applying DevOps is challenging, particularly for industrial control systems (ICS) that support critical infrastructures and that must obey to rigorous requirements from security regulations and standards. Current research on security compliant DevOps presents open gaps for this particular domain and in general for systematic application of security standards. In this paper, we present a systematic approach to integrate standard-based security activities into DevOps pipelines and highlight their automation potential. Our intention is to share our experiences and help practitioners to overcome the trade-off between adding security activities into the development process and keeping a short lead time. We conducted an evaluation of our approach at a large industrial company considering the IEC 62443-4-1 security standard that regulates ICS. The results strengthen our confidence in the usefulness of our approach and artefacts, and in that they can support practitioners to achieve security compliance while preserving agility including short lead times.info:eu-repo/semantics/acceptedVersio

    Completing Natural Inflation

    Full text link
    If the inflaton is a pseudo-scalar axion, the axion shift symmetry can protect the flatness of its potential from too large radiative corrections. This possibility, known as natural inflation, requires an axion scale which is greater than the (reduced) Planck scale. It is unclear whether such a high value is compatible with an effective field theoretical description, and if the global axionic symmetry survives quantum gravity effects. We propose a mechanism which provides an effective large axion scale, although the original one is sub-Planckian. The mechanism is based on the presence of two axions, with a potential provided by two anomalous gauge groups. The effective large axion scale is due to an almost exact symmetry between the couplings of the axions to the anomalous groups. We also comment on a possible implementation in heterotic string theory.Comment: 9 pages, 1 figur

    Pairing via Index theorem

    Full text link
    This work is motivated by a specific point of view: at short distances and high energies the undoped and underdoped cuprates resemble the π\pi-flux phase of the t-J model. The purpose of this paper is to present a mechanism by which pairing grows out of the doped π\pi-flux phase. According to this mechanism pairing symmetry is determined by a parameter controlling the quantum tunneling of gauge flux quanta. For zero tunneling the symmetry is dx2y2+idxyd_{x^2-y^2}+id_{xy}, while for large tunneling it is dx2y2d_{x^2-y^2}. A zero-temperature critical point separates these two limits

    Zero Cosmological Constant and Nonzero Dark Energy from Holographic Principle

    Full text link
    It is shown that the first law of thermodynamics and the holographic principle applied to an arbitrary large cosmic causal horizon naturally demand the zero cosmological constant and non-zero dynamical dark energy in the form of the holographic dark energy. Semiclassical analysis shows that the holographic dark energy has a parameter d=1d=1 and an equation of state comparable to current observational data, if the entropy of the horizon saturates the Bekenstein-Hawking bound. This result indicates that quantum field theory should be modified at large scale to explain dark energy. The relations among dark energy, quantum vacuum energy and entropic gravity are also discussed.Comment: Revtex 7 pages 2 fig

    Spin Liquid State around a Doped Hole in Insulating Cuprates

    Full text link
    The numerically exact diagonalization study on small clusters of the t-J model with the second- and third- neighbor hopping terms shows that a novel spin liquid state is realized around a doped hole with momentum k=(pi,0) and energy \sim 2J compared with that with (pi/2,pi/2) in insulating cuprates, where the spin and charge degrees of freedom are approximately decoupled. Our finding implies that the excitations in the insulating cuprates are mapped onto the the d-wave resonating valence bond state.Comment: 4 pages, 4 EPS figures, to be published in J. Phys. Soc. Jpn. Vol. 69, No.1 January, 200

    Non-fermi-liquid single particle lineshape of the quasi-one-dimensional non-CDW metal Li_{0.9}Mo_{6}O_{17} : comparison to the Luttinger liquid

    Full text link
    We report the detailed non-Fermi liquid (NFL) lineshape of the dispersing excitation which defines the Fermi surface (FS) for quasi-one-dimensional Li_{0.9}Mo_{6}O_{17}. The properties of Li_{0.9}Mo_{6}O_{17} strongly suggest that the NFL behavior has a purely electronic origin. Relative to the theoretical Luttinger liquid lineshape, we identify significant similarities, but also important differences.Comment: 5 pages, 3 eps figure

    Interacting agegraphic dark energy model in tachyon cosmology coupled to matter

    Get PDF
    Scalar-field dark energy models for tachyon fields are often regarded as an effective description of an underlying theory of dark energy. In this paper, we propose the agegraphic dark energy model in tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the tachyon field nonminimally coupled to the matter Lagrangian in the model rather than being inserted into the formalism as an external source. The model is constrained by the observational data. Based on the best fitted parameters in both original and new agegraphic dark energy scenarios, the model is tested by Sne Ia data. The tachyon potential and tachyon field are reconstructed and coincidence problem is revisited.Comment: 11 pages, 10 figures. Published in PLB (contains some changes in the text with respect to the first version); arXiv admin note: text overlap with arXiv:1106.2659 by same author

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ

    Interacting Agegraphic Dark Energy

    Full text link
    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\'{a}rolyh\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed.Comment: 10 pages, 5 figures, revtex4; v2: references added; v3: accepted by Eur. Phys. J. C; v4: published versio
    corecore