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Scalar-field dark energy models for tachyon fields are often regarded as an effective description of an
underlying theory of dark energy. In this Letter, we propose the agegraphic dark energy model in tachyon
cosmology by interaction between the components of the dark sectors. In the formalism, the interaction
term emerges from the tachyon field nonminimally coupled to the matter Lagrangian in the model
rather than being inserted into the formalism as an external source. The model is constrained by the
observational data. Based on the best fitted parameters in both original and new agegraphic dark energy
scenarios, the model is tested by Sne Ia data. The tachyon potential and tachyon field are reconstructed
and coincidence problem is revisited.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

A great variety of cosmological observations, direct and indi-
rect, reveal that our universe is currently undergoing a phase of
accelerated expansion [1]. A component which causes cosmic ac-
celeration is usually dubbed dark energy (DE) which is part of a
mysterious puzzle in modern cosmology. The most obvious theo-
retical candidate of DE is the cosmological constant, where it suf-
fers from fine-tuning and cosmic-coincidence problems [2]. Among
other candidates for probing the nature of DE, the holographic
dark energy (HDE) model and agegraphic dark energy (ADE), both
appear to be consistent with quantum kinematics, in the sense
that obey the Heisenberg type uncertainty relation and predict
a time-varying DE equation of state (EoS). In HDE models one
chooses the event horizon of the universe as the length scale,
where HDE gives the observation value of DE in the universe and
can drive the universe to an accelerated expansion phase. The HDE
models are very successful in explaining the observational data
and has been studied widely [3–8]. However, an obvious draw-
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back concerning causality appears in these models by choosing
event horizon as the length scale. Event horizon is a global con-
cept of spacetime; its existence depends on future evolution of
the universe; and exists only for universe with forever acceler-
ated expansion. In addition, more recently, it has been argued that
this proposal might be in contradiction to the age of some old
high redshift objects, unless a lower Hubble parameter is con-
sidered [9]. More recently, a new DE model, dubbed “agegraphic
dark energy” model, has been proposed by Cai [10], which is
also related to the holographic principle of quantum gravity. The
agegraphic dark energy takes into account the uncertainty rela-
tion of quantum mechanics together with the gravitational effect
in general relativity [11–14]. Since in ADE model the age of the
universe is chosen as the length measure, instead of the horizon
distance, the causality problem in the holographic dark energy is
avoided. The agegraphic models of DE have been examined and
constrained by various astronomical observations [15]. Although
going along a fundamental theory such as quantum gravity may
provide a hopeful way towards understanding the nature of DE,
it is hard to believe that the physical foundation of ADE is con-
vincing enough. Though, under such circumstances, the models
of holographic and ADE, to some extent, still have some advan-
tage comparing to other dynamical DE models because at least
they originate from some fundamental principles in quantum grav-
ity [16].
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For the first time, the authors in [17] study the interaction be-
tween HDE and DM in IHDE models, based on phenomenological
grounds, with the aim to alleviate the coincidence problem.

In general, the interacting terms in IADE models are not unique.
Here, we would like to extend the previous work carried in the
IADE models, by studying a tachyon cosmological model in which
the scalar field in the formalism plays two roles: as a scalar field
interacts with the matter in the universe and as a tachyon field
plays the role of DE. In our formalism the interacting term nat-
urally appears in the model from the interaction between scalar
field and matter field in the universe. We consider the cosmo-
logical model in the presence of with a tachyon potential and a
nonminimally scalar field coupled to the matter Lagrangian in the
action given by [18,19],

S =
∫ [

M2
p R

2
− V (φ)

√
1 − ∂μφ∂μφ + f (φ)Lm

]√−gd4x, (1.1)

where R is Ricci scalar. Unlike the usual Einstein–Hilbert action,
the matter Lagrangian Lm is modified as f (φ)Lm , where f (φ) is
an analytic function of φ. This last term in Lagrangian brings about
the nonminimal interaction between the matter and the scalar
field. It was demonstrated that DE driven by tachyon, decays to
CDM in the late accelerated universe and this phenomenon yields
a solution to cosmic coincidence problem. In fact, one of the mo-
tivation to include the interaction between dark energy and dark
matter is to solve the coincidence problem [20,21]. The investiga-
tions on the reconstruction of the tachyon potential V (φ) in the
framework of ADE have been carried out in [22]. In the present
Letter, we would like to extend the study to the case where both
components – the pressureless CDM and the ADE – do not con-
serve separately but interact with each other. Given the unknown
nature of both DM and DE there is nothing in principle against
their mutual interaction and it seems very special that these two
major components in the universe are entirely independent. We
suggest the agegraphic description of the tachyon DE in a universe
and reconstruct the potential and the dynamics of the tachyon
scalar field which describe the tachyon cosmology.

2. Tachyon reconstruction of the original ADE

The variation of action (1.1) with respect to the metric tensor
components in a spatially flat FRW cosmology yields the following
field equations,

3H2M2
p = ρm f + V (φ)√

1 − φ̇2
, (2.1)

M2
p

(
2Ḣ + 3H2) = −γρm f + V (φ)

√
1 − φ̇2, (2.2)

where H = ȧ
a is the Hubble parameter. In the above, we also as-

sumed a perfect fluid filled the universe with the equation of state
pm = γρm . In the following we assume that the matter in the uni-
verse is CMD where γ = 0. We can rewrite the above equations
as

3H2M2
p = ρm f + ρtac, (2.3)

M2
p

(
2Ḣ + 3H2) = −pm f − ptac, (2.4)

where ρtac and ptac are respectively the energy density and pres-
sure of the tachyon field. We define the fractional energy densities
such as

Ωmf = ρm f

3M2 H2
, Ωtac = ρtac

3M2 H2
, (2.5)
p p
where “mf ” and “tac” stand for nonminimally coupled scalar field
to matter Lagrangian and tachyon, where Ωmf = Ωm f . Thus, the
Friedmann equation can be written as

Ωmf + Ωtac = 1. (2.6)

Next we intend to implement the interacting original ADE mod-
els with tachyon scalar field. Let us first review the origin of
the ADE model. Following the line of quantum fluctuations of
spacetime, Karolyhazy et al. [23] argued that the distance t in
Minkowski spacetime cannot be known to a better accuracy than
δt = βt2/3

p t1/3 where β is a dimensionless constant of order unity.
Based on Karolyhazy relation, Maziashvili discussed that the en-
ergy density of metric fluctuations of the Minkowski spacetime is
given by [24,25]

ρD ∼ 1

t2
pt2

∼ M2
p

t2
, (2.7)

where tp is the reduced Planck time and t is a proper time scale.
In the original ADE model Cai [10] proposed the DE density of the
form (2.7) where t is chosen to be the age of the universe

T =
a∫

0

da

Ha
. (2.8)

Thus, he wrote down the energy density of the original ADE as

ρD = 3n2M2
p

T 2
, (2.9)

where the numerical factor 3n2 is introduced to parameterize
some uncertainties, such as the species of quantum fields in the
universe, the effect of curved spacetime, and so on. The dark en-
ergy density (2.9) has the same form as the HDE, but the length
measure is chosen to be the age of the universe instead of the
horizon radius of the universe. Thus the causality problem in the
agegraphic dark energy is avoided. Combining Eqs. (2.9) and (2.5),
we get

ΩD = n2

T 2 H2
. (2.10)

If we assume that the scalar field as a tachyon field plays the role
of ADE and as a nonminimally coupled field plays the role of DM,
then with the interaction between these two fields their energy
densities no longer satisfy independent conservation laws, instead
they obey:

ρ̇mf + 3Hρmf = Q , (2.11)

ρ̇tac + 3H(1 + ωtac)ρtac = −Q , (2.12)

where ρmf = ρm f and Q = ρm ḟ is the interaction term. In Q ,
ḟ gauges the intensity of the coupling between matter and scalar
field. For ḟ = 0, there is no interaction between DM and ADE. The
Q term measures the different evolution of the DM due to its
interaction with the ADE which gives rise to a different universe
expansion. The interesting point concerning the interaction term is
that in comparison to the other agegraphic models where the form
of the interaction term Q is not unique and usually is expressed as
Q = 3b2 H(ρm + ρD E), in our model the interaction term naturally
appears in the model directly as a function of the scalar field cou-
pling function f (φ) and ρm and indirectly as a function of Hubble
parameter H and ρtac . Taking the derivative with respect to the
cosmic time of Eq. (2.9) and using Eq. (2.10) we get

ρ̇D = −2HρD

√
ΩD

. (2.13)

n
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Inserting this relation into Eq. (2.12), we obtain the EoS parameter
of the original ADE in flat universe

ωD = −1 + 2
√

ΩD

3n
− Q

3HρD
. (2.14)

Differentiating Eq. (2.10) and using relation Ω̇D = Ω ′
D H , we reach

Ω ′
D = ΩD

(
−2

Ḣ

H2
− 2

√
ΩD

n

)
, (2.15)

where the dot and the prime stand for the derivative with respect
to the cosmic time and x = ln a, respectively. Taking the derivative
of both sides of the Friedmann equation (2.3) with respect to the
cosmic time, and using Eqs. (2.6), (2.9), (2.10) and (2.11), it is easy
to show that

Ḣ

H2
= −3

2

(
1 + ΩD

(
−1 + 2

√
ΩD

3n
− Q

3HρD

))
. (2.16)

Substituting this relation into Eq. (2.15), we obtain the equation of
motion for the original ADE as

Ω ′
D = ΩD(1 − ΩD)

(
3 − 2

√
ΩD

n

)
− ΩmΩD ḟ

H
. (2.17)

By using relation d
dx = −(1 + z) d

dz we can express ΩD as

dΩD

dz
= −(1 + z)−1

(
ΩD(1 − ΩD)

(
3 − 2

√
ΩD

n

)
− ΩmΩD ḟ

H

)
.

(2.18)

Now we suggest a correspondence between the original ADE and
tachyon scalar field namely, we identify ρtac with ρD . Using rela-
tion ρtac = ρD = 3H2M2

pΩD and ωD = φ̇2 − 1, we can find

V (φ) = ρtac

√
1 − φ̇2 = 3H2M2

pΩD

(
1 − 2

√
ΩD

3n
+ Q

3HρD

)1/2

,

(2.19)

φ̇ = √
1 + ωD =

(
2
√

Ω D

3n
− Q

3HρD

)1/2

. (2.20)

Using relation φ̇ = φ′H , we get

φ′ = H−1
(

2
√

Ω D

3n
− Q

3HρD

)1/2

, (2.21)

or equivalently

dφ

dz
= 1

H(1 + z)

(
2
√

ΩD

3n
+ Q

3HρD

)1/2

. (2.22)

Also by using Eq. (2.16) we can write

dH

dz
= −H(1 + z)−1

(
3ΩD

2
− Ω

3/2
D

n
− 3

2
− Ωm ḟ

2H

)
, (2.23)

where the sign is arbitrary and can be changed by a redefini-
tion of the field, φ → −φ. Then, by fixing the field amplitude at
the present era to be zero, one can easily obtain the dynamic
of the agegraphic tachyon field. It is difficult to solve Eqs. (2.18),
(2.22) and (2.23) analytically, however, the evolutionary form of
the interacting agegraphic tachyon field φ and Ωtac can be easily
obtained integrating it numerically from z = 0 to a given value z.
In addition, from the constructed agegraphic tachyon model, the
evolution of V (φ) with respect to φ can be determined. In the
following, we assume that the function f (φ) behaves exponen-
tially as f (φ) = f0ebφ(z). Since ḟ (φ) is present in the interaction
term Q , the parameters that determine the dynamics of the inter-
action are b and f0 together with ρm and γ , the energy density
and EoS parameter of the matter, respectively. Note that f0 = 0
or b = 0 leads to the absence of the interaction. We will do nu-
merical calculation after the best fit analyzing of our model in
Section 4.

3. Tachyon reconstruction of the new ADE

To avoid some internal inconsistencies in the original ADE
model, the so-called “new agegraphic dark energy” was proposed,
where the time scale is chosen to be the conformal time η in-
stead of the age of the universe. The new ADE contains some new
features different from the original ADE and overcome some un-
satisfactory points. For instance, the original ADE suffers from the
difficulty to describe the matter-dominated epoch while the new
ADE resolved this issue [26]. The energy density of the new ADE
can be written as

ρD = 3n2M2
p

η2
, (3.1)

where the conformal time η is given by

η =
a∫

0

da

Ha2
. (3.2)

The fractional energy density of the new ADE is now expressed as

ΩD = n2

H2η2
. (3.3)

Taking the derivative with respect to the cosmic time of Eq. (3.1)
and using Eq. (3.3) we get

ρ̇D = −2H

√
Ω D

na
ρD . (3.4)

Inserting this relation into Eq. (2.12) we obtain the EoS parameter
of the new ADE

ωD = −1 + 2
√

ΩD

3na
− Q

3HρD
. (3.5)

The evolution behavior of the new ADE is now given by

Ω ′
D = ΩD(1 − ΩD)

(
3 − 2

√
ΩD

na

)
− ΩmΩD ḟ

H
, (3.6)

or equivalently

dΩD

dz
= −(1 + z)−1

(
ΩD(1 − ΩD)

(
3 − 2

√
ΩD

na

)
− ΩmΩD ḟ

H

)
.

(3.7)

Next, we reconstruct the new agegraphic tachyon DE model, con-
necting the tachyon scalar field with the new ADE. Using Eqs. (3.3)
and (3.5) one can easily show that the tachyon potential and ki-
netic energy term take the following form

V (φ) = 3H2M2
pΩD

(
1 − 2

√
Ω D

3na
+ Q

3HρD

)1/2

, (3.8)

φ̇ =
(

2
√

Ω D

3na
− Q

3HρD

)1/2

. (3.9)
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Table 1
Best fit values of original ADE model.

Observational data H(z) H(z) + CMB H(z) + CMB + BAO

H(0) (Km/s/Mpc) 71 71 72
ΩD (0) 0.72 0.73 0.73
n 18.6 7.2 22.2
b −0.7 0.2 −0.4

Table 2
Best fit values of NADE model.

Observational data H(z) H(z) + CMB H(z) + CMB + BAO

H(0) (Km/s/Mpc) 71 71 72
ΩD (0) 0.72 0.73 0.73
n 24 8.3 38.3
b −0.9 0.3 −0.6

We can also rewrite Eq. (3.9) as

φ′ = H−1
(

2
√

ΩD

3na
− Q

3HρD

)1/2

, (3.10)

or

dφ

dz
= 1

H(1 + z)

(
2
√

ΩD

3na
+ Q

3HρD

)1/2

. (3.11)

In this way we connect the interacting new ADE with a tachyon
field and reconstruct the potential and the dynamics of the tachyon
field which describe tachyon cosmology. Similar to Eq. (2.23), for
new ADE we can write

dH

dz
= −H(1 + z)−1

(
3ΩD

2
− Ω

3/2
D

na
− 3

2
− Ωm ḟ

2H

)
. (3.12)

Again, it is difficult to solve Eqs. (3.7), (3.11) and (3.12) analytically,
however, the evolutionary form of the interacting new agegraphic
tachyon field φ and Ωtac can be easily obtained by integrating it
numerically from z = 0 to a given value z. In addition, from the
constructed agegraphic tachyon model, the evolution of V (φ) with
respect to φ can be determined.

4. Observational best fitting with Hubble parameter, H(z)

Now, we study the constraints on the model parameters using
χ2 method, utilizing recent observational data, including the Hub-
ble parameter as a function of the redshift, the baryonic acoustic
oscillation (BAO) distance ratio and the cosmic microwave back-
ground (CMB) radiation.

We solve the set of coupled nonlinear partial differential equa-
tions, (2.18), (2.22), (2.23). For best fitting the model for the pa-
rameters n, b and the initial conditions ΩD(0) and H(0) with the
most recent observational data for Hubble parameter, we employ
the χ2 method. We constrain the parameters including the initial
conditions by minimizing the χ2 function given as

χ2
Hub

(
n,b;ΩD(0), H(0)

)
=

14∑
i=1

[Hth(zi |n,b;ΩD(0), H(0)) − Hobs(zi)]2

σ 2
Hub(zi)

, (4.1)

where the sum is over the cosmological dataset. In (4.1), Hth

and Hobs are the Hubble parameters obtained from the theoretical
model and from observation, respectively. Also, σHub is the esti-
mated error of the Hobs where obtained from observation [27].
Fig. 1. The best fitted H(z) + CMB + BAO, for the original and new ADE model.

We add the CMB data in our analysis. Since the CMB shift pa-
rameter R [28,29], contains the main information of the observa-
tions from the CMB, it is used to constrain the theoretical models
by minimizing

χ2
CMB = [R − Robs]2

σ 2
R

, (4.2)

where Robs = 1.725 ± 0.018 [30], is given by the WMAP7 data. Its
corresponding theoretical value is defined as

R ≡ Ω
1/2
m0

zCMB∫
0

dz′

E(z′)
, (4.3)

with zCMB = 1091.3. Moreover, for the BAO data, the BAO distance
ratio at z = 0.20 and z = 0.35 from the joint analysis of the 2dF
Galaxy Redsihft Survey and SDSS data [31,32] is used. The distance
ratio, given by
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Fig. 2. The best fitted distance modulus for the original and new ADE model.

D V (z = 0.35)

D V (z = 0.20)
= 1.736 ± 0.065, (4.4)

is a relatively model independent quantity with D V (z) defined as

D V (zBAO) =
[

zBAO

H(zBAO)

( zBAO∫
0

dz

H(z)

)2]1/3

. (4.5)

So, the constraint from BAO can be obtained by performing the
following χ2 statistics

χ2
BAO = [(D V (z = 0.35)/D V (z = 0.20)) − 1.736]2

0.0652
. (4.6)

The constraints from a combination of Sne Ia, BAO and CMB can
be obtained by minimizing χ2

Sne + χ2
BAO + χ2

CMB in two original and
new ADE scenarios. The results are shown in Tables 1 and 2.

From Tables 1 and 2, and Fig. 1 the results show that the ini-
tial conditions for dynamical variables ΩD and H are not sensitive
to the cosmological models of original and new ADE. They are not
Fig. 3. Yellow (solid), blue (dash) and red (dash–dot) lines show the best fitted φ(z),
respectively, for the original and new ADE model. (For interpretation of the refer-
ences to color, the reader is referred to the web version of this Letter.)

also sensitive to the CMB and BAO data. However, the model pa-
rameters n and b are very dependent on both cosmological models
and observational dataset.

5. Cosmological test

We have already best fitted our model with the current ob-
servational data for Hubble parameter. Now, we test our model
against recent observational data for the best fitted distance mod-
ulus in both original and new ADE, as shown in Fig. 2. The graphs
show that the model is in good agreement with the observational
data.

In addition for both models we plotted the reconstructed po-
tential and scalar field V (φ) and φ(z) respectively using the best
fitted model parameters (see Figs. 3 and 4).

In Fig. 3, we see that the dynamics of the best fitted and re-
constructed scalar field depends on the observational data and also
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Fig. 4. Yellow (solid), blue (dash) and red (dash–dot) lines show the best fitted V (φ),
respectively, for the original and new ADE model. (For interpretation of the refer-
ences to color, the reader is referred to the web version of this Letter.)

cosmological models. The graphs show a decreasing trend with de-
creasing redshift. Similar behavior can be seen in the graphs for
the reconstructed potential function with the best fitted model pa-
rameters.

In [33], based on different forms of tachyon potential, the be-
havior of the scale factor and the duration of the accelerated
expansion of the universe is discussed. Here, in Fig. 5, we have
plotted the phase portrait for the scale factor in both old and new
ADE scenarios. The graph shows that the current tachyon domi-
nated universe creates late time acceleration and earlier dark mat-
ter domination produces the deceleration phase in to past. It also
illustrates the dynamics of cosmic scale factor in both cases of old
and new ADE.

Using the fitting result, we have also studied the coincidence
problem. The ratio of energy densities between DM and DE, r =
ρDM/ρD , and its evolution is plotted with respect to the scale fac-
tor in Fig. 6. From the graph we observe a slower change of r in the
Fig. 5. Phase space of the scale factor for ΩD = 0.74 and the best fitted model pa-
rameters. At present epoch, we choose a = 1; z = 0. The transition from decelerated
expansion to accelerated one is shown in both old (dashed red) and new (solid
black) ADE scenarios. (For interpretation of the references to color, the reader is
referred to the web version of this Letter.)

Fig. 6. The behaviors of the ratio r = ρc/ρd in two cases of old and new ADE sce-
narios.

current epoch of the universe expansion in both cases of old and
new ADE scenarios. Also, the ratio is about one-to-one in the late
time era. In comparison to ΛCDM model, the period when energy
densities of DE and DM are comparable is longer due to the inter-
action between DE and DM, see Fig. 6. This in turn ameliorates the
coincidence problem. Similar to the phase space of the scale fac-
tor, the ratio of energy densities is not affected by the new ADE
model.

6. Summary

In this Letter, we investigate the original and new interacting
agegraphic dark energy models in tachyon cosmology. We assume
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that the matter field acts as DM and the tachyon filed plays the
role of original or new ADE. We also assume that these two dark
components interact and the interaction term emerges from the
model rather being inserted into the formalism as an external
source. We first constraint the model parameters and the initial
conditions with the observational data for Hubble parameter us-
ing chi-squared statistical method. The result shows that the initial
conditions are insensitive to the cosmological models and observa-
tional data whereas the model parameters highly depend on them.
Then based on the best fitted evolutionary behavior of the interact-
ing original and new ADE, we test the model against observational
data for distance modulus and also reconstruct the tachyon poten-
tial and scalar field. Further, we compute the scale factor velocity
and the ratio of dark sectors with respect to the scale factor of
the universe in both scenarios and revisit the coincidence prob-
lem.
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