1,413 research outputs found

    Substantial gain enhancement for optical parametric amplification and oscillation in two-dimensional χ(2) nonlinear photonic crystals

    Get PDF
    We have analyzed optical parametric interaction in a 2D NPC. While in general the nonlinear coefficient is small compared to a 1D NPC, we show that at numerous orientations a multitude of reciprocal vectors contribute additively to enhance the gain in optical parametric amplification and oscillation in a 2D patterned crystal. In particular, we have derived the effective nonlinear coefficients for common-signal amplification and common-idler amplification for a tetragonal inverted domain pattern. We show that in the specific case of signal amplification with QPM by both G10 and G11, symmetry of the crystal results in coupled interaction with the corresponding signal amplification by G10 and G1,-1. As a consequence, this coupled utilization of all three reciprocal vectors leads to a substantial increase in parametric gain. Using PPLN we demonstrate numerically that a gain that comes close to that of a 1D QPM crystal could be realized in a 2D NPC with an inverted tetragonal domain pattern. This special mechanism produces two pairs of identical signal and idler beams propagating in mirror-imaged forward directions. In conjunction with this gain enhancement and multiple beams output we predict that there is a large pulling effect on the output wavelength due to dynamic signal build-up in the intrinsic noncollinear geometry of a 2D NPC OPO

    Hadronic production of the PP-wave excited BcB_c-states (BcJ,L=1∗B_{cJ,L=1}^*)

    Full text link
    Adopting the complete αs4\alpha_s^4 approach of the perturbative QCD (pQCD) and updated parton distribution functions, we have estimated the hadronic production of PP-wave excited BcB_c-states (BcJ,L=1∗B_{cJ,L=1}^*). In the estimate, special care on the relation of the production amplitude to the derivative of wave function at origin of the potential model is payed. For experimental references, main uncertainties are discussed, and the total cross sections and the distributions of the production with reasonable cuts at the energies of Tevatron and LHC are computed and presented. The results show that PP-wave production may contribute to the BcB_c-meson production indirectly by a factor about 0.5 of the direct production, and with such a big cross section, it is worth further to study the possibility to observe the PP-wave production itself experimentally.Comment: 23 pages, 9 figures, to replace for revising the misprints ec

    Bayesian Lattice Filters for Time-Varying Autoregression and Time-Frequency Analysis

    Full text link
    Modeling nonstationary processes is of paramount importance to many scientific disciplines including environmental science, ecology, and finance, among others. Consequently, flexible methodology that provides accurate estimation across a wide range of processes is a subject of ongoing interest. We propose a novel approach to model-based time-frequency estimation using time-varying autoregressive models. In this context, we take a fully Bayesian approach and allow both the autoregressive coefficients and innovation variance to vary over time. Importantly, our estimation method uses the lattice filter and is cast within the partial autocorrelation domain. The marginal posterior distributions are of standard form and, as a convenient by-product of our estimation method, our approach avoids undesirable matrix inversions. As such, estimation is extremely computationally efficient and stable. To illustrate the effectiveness of our approach, we conduct a comprehensive simulation study that compares our method with other competing methods and find that, in most cases, our approach performs superior in terms of average squared error between the estimated and true time-varying spectral density. Lastly, we demonstrate our methodology through three modeling applications; namely, insect communication signals, environmental data (wind components), and macroeconomic data (US gross domestic product (GDP) and consumption).Comment: 49 pages, 16 figure

    The meson BcB_c annihilation to leptons and inclusive light hadrons

    Get PDF
    The annihilation of the BcB_c meson to leptons and inclusive light hadrons is analyzed in the framework of nonrelativistic QCD (NRQCD) factorization. We find that the decay mode, which escapes from the helicity suppression, contributes a sizable fraction width. According to the analysis, the branching ratio due to the contribution from the color-singlet component of the meson BcB_c can be of order (10^{-2}). We also estimate the contributions from the color-octet components. With the velocity scaling rule of NRQCD, we find that the color-octet contributions are sizable too, especially, in certain phase space of the annihilation they are greater than (or comparative to) the color-singlet component. A few observables relevant to the spectrum of charged lepton are suggested, that may be used as measurements on the color-octet and color-singlet components in the future BcB_c experiments. A typical long distance contribution in the annihilation is estimated too.Comment: 26 pages, 5 figures (6 eps-files), submitted to Phys. Rev.

    Development and evaluation of superconducting circuit elements

    Get PDF
    An approach to the application of high Tc ceramic superconductors to practical circuit elements was developed and demonstrated. This method, known as the rigid-conductor process (RCP), involves the combination of a pre-formed, sintered, and tested superconductor material with an appropriate, rigid substrate via an epoxy adhesive which also serves to encapsulate the element from the ambient environment. Emphasis was on the practical means to achieve functional, reliable, and reproducible components. Although all of the work described in this report involved a YBa2Cu3Osub(7-x) high Tc superconductor material, the techniques developed and conclusions reached are equally applicable to other high Tc materials

    Laboratory study on the drag force distribution within model forest canopies in turbulent shear flow, A

    Get PDF
    CER67-68GH-JHN50.March 1968.Includes bibliographical references (page 20).Prepared under U.S. Army Research Grant DA-AMC-28-043-65-G20 U.S. Army Material Command Washington 25, D.C.The objective of this study was to determine the distribution of the tree drag force within various model forest canopies subjected to various ambient wind conditions. Ultimately this information may be related to diffusion within the forest canopy. The influence on individual tree drag due to neighboring trees was investigated by arranging the trees in various configurations of columns and rows, the columns being parallel to the ambient wind and the rows being perpendicular. Two tree spacings for the columns and rows were investigated. Furthermore, a large forest canopy field was investigated that covered an area of twenty-one square meters. For this arrangement it was determined that the tree drag field can be classified into two zones - an initial zone and a steady decay zone. In order to study the influence of the boundary layer development on tree drag, the various arrangements of trees were tested under a thin boundary layer condition and under a thick boundary layer condition. In the course of this study a strain gage force dynamometer was developed that can reliably measure a drag force as small as 0.1 gram on a model tree.Under grant DA-AMC-28-043-65-G20

    Non-Markovian finite-temperature two-time correlation functions of system operators: beyond the quantum regression theorem

    Full text link
    An extremely useful evolution equation that allows systematically calculating the two-time correlation functions (CF's) of system operators for non-Markovian open (dissipative) quantum systems is derived. The derivation is based on perturbative quantum master equation approach, so non-Markovian open quantum system models that are not exactly solvable can use our derived evolution equation to easily obtain their two-time CF's of system operators, valid to second order in the system-environment interaction. Since the form and nature of the Hamiltonian are not specified in our derived evolution equation, our evolution equation is applicable for bosonic and/or fermionic environments and can be applied to a wide range of system-environment models with any factorized (separable) system-environment initial states (pure or mixed). When applied to a general model of a system coupled to a finite-temperature bosonic environment with a system coupling operator L in the system-environment interaction Hamiltonian, the resultant evolution equation is valid for both L = L^+ and L \neq L^+ cases, in contrast to those evolution equations valid only for L = L^+ case in the literature. The derived equation that generalizes the quantum regression theorem (QRT) to the non-Markovian case will have broad applications in many different branches of physics. We then give conditions on which the QRT holds in the weak system-environment coupling case, and apply the derived evolution equation to a problem of a two-level system (atom) coupled to a finite-temperature bosonic environment (electromagnetic fields) with L \neq L^+.Comment: To appear in the Journal of Chemical Physics (12 pages, 1 figure
    • …
    corecore