research

Substantial gain enhancement for optical parametric amplification and oscillation in two-dimensional χ(2) nonlinear photonic crystals

Abstract

We have analyzed optical parametric interaction in a 2D NPC. While in general the nonlinear coefficient is small compared to a 1D NPC, we show that at numerous orientations a multitude of reciprocal vectors contribute additively to enhance the gain in optical parametric amplification and oscillation in a 2D patterned crystal. In particular, we have derived the effective nonlinear coefficients for common-signal amplification and common-idler amplification for a tetragonal inverted domain pattern. We show that in the specific case of signal amplification with QPM by both G10 and G11, symmetry of the crystal results in coupled interaction with the corresponding signal amplification by G10 and G1,-1. As a consequence, this coupled utilization of all three reciprocal vectors leads to a substantial increase in parametric gain. Using PPLN we demonstrate numerically that a gain that comes close to that of a 1D QPM crystal could be realized in a 2D NPC with an inverted tetragonal domain pattern. This special mechanism produces two pairs of identical signal and idler beams propagating in mirror-imaged forward directions. In conjunction with this gain enhancement and multiple beams output we predict that there is a large pulling effect on the output wavelength due to dynamic signal build-up in the intrinsic noncollinear geometry of a 2D NPC OPO

    Similar works