77 research outputs found

    Phonon Softening and Direct to Indirect Bandgap Crossover in Strained Single Layer MoSe2

    Full text link
    Motivated by recent experimental observations of Tongay et al. [Tongay et al., Nano Letters, 12(11), 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E" Raman peaks (E1g and E2g in bulk) exhibit significant red shifts (up to 30 cm-1), (2) the position of the A1' peak remains at 180 cm-1 (A1g in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear and (4) the electronic band structure undergoes a direct to indirect bandgap crossover under 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational and optical properties of single layer MoSe2 and similar MX2 dichalcogenides.Comment: http://link.aps.org/doi/10.1103/PhysRevB.87.12541

    Hexagonal AlN: Dimensional-crossover-driven band-gap transition

    Get PDF
    Motivated by a recent experiment that reported the successful synthesis of hexagonal (h) AlN [Tsipas, Appl. Phys. Lett. 103, 251605 (2013)APPLAB0003-695110.1063/1.4851239], we investigate structural, electronic, and vibrational properties of bulk, bilayer, and monolayer structures of h-AlN by using first-principles calculations. We show that the hexagonal phase of the bulk h-AlN is a stable direct-band-gap semiconductor. The calculated phonon spectrum displays a rigid-layer shear mode at 274 cm-1 and an Eg mode at 703 cm-1, which are observable by Raman measurements. In addition, single-layer h-AlN is an indirect-band-gap semiconductor with a nonmagnetic ground state. For the bilayer structure, AA′-type stacking is found to be the most favorable one, and interlayer interaction is strong. While N-layered h-AlN is an indirect-band-gap semiconductor for N=1-9, we predict that thicker structures (N≥10) have a direct band gap at the Γ point. The number-of-layer-dependent band-gap transitions in h-AlN is interesting in that it is significantly different from the indirect-to-direct crossover obtained in the transition-metal dichalcogenides.Flemish Science Foundation (FWO-Vl); Methusalem foundation of the Flemish government; TUBITAK Project (114F397); FWO Pegasus Long Marie Curie Fellowshi

    New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene

    Get PDF
    The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of ∼5eV, however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half -fluorinated carbon on Sic(0001), i.e., the (6√3×6√3) R30° C/SiC "buffer layer," graphene on this (6√3×6√3) R30° C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (∼2.5-eV band gap) and metallic regions, respectively

    The mediating role of self/everyday creativity and depression on the relationship between creative personality traits and problematic social media use among emerging adults

    Get PDF
    Personality is one of the important contributory factors in the development of problematic technology use. The purpose of the present study was to investigate the direct and indirect associations of creative personality traits with problematic social media use via self/everyday creativity, depression, and loneliness. A total of 460 Turkish emerging adults aged between 18 and 26 years (61% female) were surveyed. Findings indicated that (i) task-orientedness was indirectly associated with problematic social media use via self/everyday creativity, (ii) self-confidence was directly and indirectly associated with problematic social media use via self/everyday creativity and depression, (iii) risk-taking was indirectly associated with problematic social media use via depression, and (iv) self/everyday creativity and depression were directly associated with problematic social media use. The present study is the first to suggest that creative personality traits (i.e., task-orientedness, self-confidence, and risk-taking) and self/everyday creativity are associated with problematic social media use and that these factors should be taken into account when considering the etiology of problematic social media use

    Trait emotional intelligence and problematic social media use among adults: the mediating role of social media use motives

    Get PDF
    There are many contributing factors to problematic social media use including personality differences, psychosocial factors, and specific use motivations. The present study (N = 444 emerging adults, 75% women) investigated the direct and indirect relationships between trait emotional intelligence and problematic social media use via social media use motives by testing a complex mediation model. Path analyses suggested that trait emotional intelligence was directly and indirectly associated with problematic social media use via two social media use motives: (i) expressing or presenting a more popular self, and (ii) passing time. Results of the present study indicate that trait emotional intelligence may have a role in the motives for using social media as well as the development and maintenance of problematic social media use. Moreover, future studies should focus mediator risk factors between trait emotional intelligence and problematic social media use

    Strain Engineering of 2D Materials

    Get PDF
    When bulk structures are thinned down to their monolayers, degree of orbital interactions, mechanical properties and electronic band dispersion of the crystal structure become highly sensitive to the amount of applied strain. The source of strain on the ultra-thin lattice structure can be (1) an external device or a flexible substrate that can stretch or compress the structure, (2) the lattice mismatch between the layer and neighboring layers or (3) stress induced by STM or AFM tip

    Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2

    Get PDF
    Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E′ and E′′ Raman peaks (E2g and E1g in bulk) exhibit significant redshifts (up to ∼30 cm−1), (2) the position of the A1′ peak remains at ∼180 cm−1 (A1g in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under ∼3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides.This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship.Peer Reviewe
    • …
    corecore