7,587 research outputs found

    Bi-directional, buried-wire skin-friction gage

    Get PDF
    A compact, nonobtrusive, bi-directional, skin-friction gage was developed to measure the mean shear stress beneath a three-dimensional boundary layer. The gage works by measuring the heat flux from two orthogonal wires embedded in the surface. Such a gage was constructed and its characteristics were determined for different angles of yaw in a calibration experiment in subsonic flow with a Preston tube used as a standard. Sample gages were then used in a fully three-dimensional turbulent boundary layer on a circular cone at high relative incidence, where there were regimes of favorable and adverse pressure gradients and three-dimensional separation. Both the direction and magnitude of skin friction were then obtained on the cone surface

    Symmetrical and asymmetrical separations about a yawed cone

    Get PDF
    Three dimensional flow separations about a circular cone were investigated in the Mach number range 0.6 - 1.8. The cone was tested in the Ames 1.8 by 1.8 m wind tunnel at Reynolds numbers based on the cone length from 4,500,000 to 13,500,000 under nominally zero heat transfer conditions. Results indicate that: (1) the lee-side separated flow develops from initially symmetrically disposed and near-conical separation lines at angle of incidence/cone semiangle equal to approximately 1, with the free shear layers eventually rolling up into tightly coiled vortices at all Mach numbers; (2) the onset of asymmetry of the lee-side separated flow about the mean pitch plane is sensitive to Mach number, Reynolds number, and the nose bluntness; and (3) as the Mach number is increased beyond 1.8, the critical angle of incidence for the onset of asymmetry increases until at about M = 2.75 there is no longer any significant side force development

    Modulation Doping of a Mott Quantum Well by a Proximate Polar Discontinuity

    Full text link
    We present evidence for hole injection into LaAlO3/LaVO3/LaAlO3 quantum wells near a polar surface of LaAlO3 (001). As the surface is brought in proximity to the LaVO3 layer, an exponential drop in resistance and a decreasing positive Seebeck coefficient is observed below a characteristic coupling length of 10-15 unit cells. We attribute this behavior to a crossover from an atomic reconstruction of the AlO2-terminated LaAlO3 surface to an electronic reconstruction of the vanadium valence. These results suggest a general approach to tunable hole-doping in oxide thin film heterostructures.Comment: 16 pages, 7 figure

    Meteoritic material on the moon

    Get PDF
    Three types of meteoritic material are found on the moon: micrometeorites, ancient planetesimal debris from the "early intense bombardment," and debris of recent, craterforming projectiles. Their amounts and compositions have been determined from trace element studies. The micrometeorite component is uniformly distributed over the entire lunar surface, but is seen most clearly in mare soils. It has a primitive, C1-chondrite-like composition, and comprises 1 to 1.5 percent of mature soils. Apparently it represents cometary debris. The ancient component is seen in highland breccias and soils. Six varieties have been recognized, differing in their proportions of refractories (Ir, Re), volatiles (Ge, Sb), and Au. All have a fractionated composition, with volatiles depleted relative to siderophiles. The abundance patterns do not match those of the known meteorite classes. These ancient meteoritic components seem to represent the debris of an extinct population of bodies (planetisimals, moonlets) that produced the mare basins during the first 700 Myr of the moon's history. On the basis of their stratigraphy and geographic distribution, five of the six groups are tentatively assigned to specific mare basins: Imbrium, Serenitatis, Crisium, Nectaris, and Humorum or Nubium

    Meteoritic material on the moon

    Get PDF
    Micrometeorites, ancient planetesimal debris from the early intense bombardment, and debris of recent, crater-forming projectiles are discussed and their amounts and compositions have been determined from trace element studies. The micrometeorite component is uniformly distrubuted over the entire lunar surface, but is seen most clearly in mare soils whereas, the ancient component is seen in highland breccias and soils. A few properties of the basin-forming objects are inferred from the trace element data. An attempt is made to reconstruct the bombardment history of the moon from the observation that only basin-forming objects fell on the moon after crustal differentiation. The apparent half-life of basin-forming bodies is close to the calculated value for earth-crossing planetesimals. It is shown that a gap in radiometric ages is expected between the Imbrium and Nectaris impacts, because all 7 basins formed in this interval lie on the farside or east limb

    Disassembly kinetics of thick filaments in rabbit skeletal muscle fibers. Effects of ionic strength, Ca2+ concentration, pH, temperature, and cross-bridges on the stability of thick filament structure

    Get PDF
    The kinetics of dissociation from both ends of thick filaments in a muscle fiber was investigated by an optical diffraction method. The dissociation velocity of thick filaments at a sarcomere length of 2.75 microns increased with increasing the KCl concentration (from 60 mM to 0.5 M), increasing the pH value (from 6.2 to 8.0) or decreasing the temperature (from 25 to 5 degrees C) in the presence of 10 mM pyrophosphate and 5 mM MgCl2. Micromolar concentrations of Ca2+ suppressed the dissociation velocity markedly at shorter sarcomere lengths. The dissociation velocity, v, decreased as thick filaments became shorter, and v = -db/dt = vo exp (alpha b), where b is the length of the thick filament at time t and vo and alpha are constants. The vo value was largely dependent on the KCl concentration but the alpha value was not. The stiffness of a muscle fiber decreased nearly in proportion to the decrease of overlap between thick and thin filaments induced by the dissociation of thick filaments. This indicates that cross-bridges are uniformly distributed and contribute independently to the stiffness of a muscle fiber during the dissociation of thick filaments

    Quantum corrections to the Larmor radiation formula in scalar electrodynamics

    Full text link
    We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.Comment: 19 page

    Towards the re-verification of process tank calibrations

    Get PDF
    Re-verification is needed to ensure that the calibration (the relationship between measured level and measured volume) that is obtained during commissioning hasn’t changed over time. This can be achieved, in part, by metering in solution and correlating with marks identified a priori. Mark identification and correlation are discussed and possible error sources are outlined

    Radiation from a moving Scalar Source

    Full text link
    We study classical radiation and quantum bremsstrahlung effect of a moving point scalar source. Our classical analysis provides another example of resolving a well-known apparent paradox, that of whether a constantly accelerating source radiates or not. Quantum mechanically, we show that for a scalar source with arbitrary motion, the tree level emission rate of scalar particles in the inertial frame equals the sum of emission and absorption rates of zero-energy Rindler particles in the Rindler frame. We then explicitly verify this result for a source undergoing constant proper acceleration.Comment: 15 pages, CU-TP-59

    Maximally Symmetric Spin-Two Bitensors on S3S^3 and H3H^3

    Full text link
    The transverse traceless spin-two tensor harmonics on S3S^3 and H3H^3 may be denoted by T(kl)abT^{(kl)}{}_{ab}. The index kk labels the (degenerate) eigenvalues of the Laplacian □\square and ll the other indices. We compute the bitensor ∑lT(kl)ab(x)T(kl)a′b′(x′)∗\sum_l T^{(kl)}{}_{ab}(x) T^{(kl)}{}_{a'b'}(x')^* where x,x′x,x' are distinct points on a sphere or hyperboloid of unit radius. These quantities may be used to find the correlation function of a stochastic background of gravitational waves in spatially open or closed Friedman-Robertson-Walker cosmologies.Comment: 12 pages, RevTeX, uuencoded compressed .tex file, minor typos correcte
    • …
    corecore