401 research outputs found
Quantum to classical transition in a system with a mixed classical dynamics
We study how decoherence rules the quantum-classical transition of the Kicked
Harmonic Oscillator (KHO). When the amplitude of the kick is changed the system
presents a classical dynamics that range from regular to a strong chaotic
behavior. We show that for regular and mixed classical dynamics, and in the
presence of noise, the distance between the classical and the quantum phase
space distributions is proportional to a single parameter which relates the effective Planck constant
, the kick amplitude and the diffusion constant . This
is valid when , a case that is always attainable in the semiclassical
regime independently of the value of the strength of noise given by . Our
results extend a recent study performed in the chaotic regime.Comment: 10 pages, 7 figure
Exact Quantum Solutions of Extraordinary N-body Problems
The wave functions of Boson and Fermion gases are known even when the
particles have harmonic interactions. Here we generalise these results by
solving exactly the N-body Schrodinger equation for potentials V that can be
any function of the sum of the squares of the distances of the particles from
one another in 3 dimensions. For the harmonic case that function is linear in
r^2. Explicit N-body solutions are given when U(r) = -2M \hbar^{-2} V(r) =
\zeta r^{-1} - \zeta_2 r^{-2}. Here M is the sum of the masses and r^2 = 1/2
M^{-2} Sigma Sigma m_I m_J ({\bf x}_I - {\bf x}_J)^2. For general U(r) the
solution is given in terms of the one or two body problem with potential U(r)
in 3 dimensions. The degeneracies of the levels are derived for distinguishable
particles, for Bosons of spin zero and for spin 1/2 Fermions. The latter
involve significant combinatorial analysis which may have application to the
shell model of atomic nuclei. For large N the Fermionic ground state gives the
binding energy of a degenerate white dwarf star treated as a giant atom with an
N-body wave function. The N-body forces involved in these extraordinary N-body
problems are not the usual sums of two body interactions, but nor are forces
between quarks or molecules. Bose-Einstein condensation of particles in 3
dimensions interacting via these strange potentials can be treated by this
method.Comment: 24 pages, Latex. Accepted for publication in Proceedings of the Royal
Societ
Quantum Instantons and Quantum Chaos
Based on a closed form expression for the path integral of quantum transition
amplitudes, we suggest rigorous definitions of both, quantum instantons and
quantum chaos. As an example we compute the quantum instanton of the double
well potential.Comment: Extended version with new figures. Text (LaTeX), 5 Figures (epsi
files
A Phase-Space Approach to Collisionless Stellar Systems Using a Particle Method
A particle method for reproducing the phase space of collisionless stellar
systems is described. The key idea originates in Liouville's theorem which
states that the distribution function (DF) at time t can be derived from
tracing necessary orbits back to t=0. To make this procedure feasible, a
self-consistent field (SCF) method for solving Poisson's equation is adopted to
compute the orbits of arbitrary stars. As an example, for the violent
relaxation of a uniform-density sphere, the phase-space evolution which the
current method generates is compared to that obtained with a phase-space method
for integrating the collisionless Boltzmann equation, on the assumption of
spherical symmetry. Then, excellent agreement is found between the two methods
if an optimal basis set for the SCF technique is chosen. Since this
reproduction method requires only the functional form of initial DFs but needs
no assumptions about symmetry of the system, the success in reproducing the
phase-space evolution implies that there would be no need of directly solving
the collisionless Boltzmann equation in order to access phase space even for
systems without any special symmetries. The effects of basis sets used in SCF
simulations on the reproduced phase space are also discussed.Comment: 16 pages w/4 embedded PS figures. Uses aaspp4.sty (AASLaTeX v4.0). To
be published in ApJ, Oct. 1, 1997. This preprint is also available at
http://www.sue.shiga-u.ac.jp/WWW/prof/hozumi/papers.htm
Infinite ergodic theory and Non-extensive entropies
We bring into account a series of result in the infinite ergodic theory that
we believe that they are relevant to the theory of non-extensive entropie
Two-dimensional maps at the edge of chaos: Numerical results for the Henon map
The mixing properties (or sensitivity to initial conditions) of
two-dimensional Henon map have been explored numerically at the edge of chaos.
Three independent methods, which have been developed and used so far for the
one-dimensional maps, have been used to accomplish this task. These methods are
(i)measure of the divergence of initially nearby orbits, (ii)analysis of the
multifractal spectrum and (iii)computation of nonextensive entropy increase
rates. The obtained results strongly agree with those of the one-dimensional
cases and constitute the first verification of this scenario in two-dimensional
maps. This obviously makes the idea of weak chaos even more robust.Comment: 4 pages, 3 figure
Forming Galaxies with MOND
Beginning with a simple model for the growth of structure, I consider the
dissipationless evolution of a MOND-dominated region in an expanding Universe
by means of a spherically symmetric N-body code. I demonstrate that the final
virialized objects resemble elliptical galaxies with well-defined relationships
between the mass, radius, and velocity dispersion. These calculations suggest
that, in the context of MOND, massive elliptical galaxies may be formed early
(z > 10) as a result of monolithic dissipationless collapse. Then I reconsider
the classic argument that a galaxy of stars results from cooling and
fragmentation of a gas cloud on a time scale shorter than that of dynamical
collapse. Qualitatively, the results are similar to that of the traditional
picture; moreover, the existence, in MOND, of a density-temperature relation
for virialized, near isothermal objects as well as a mass-temperature relation
implies that there is a definite limit to the mass of a gas cloud where this
condition can be met-- an upper limit corresponding to that of presently
observed massive galaxies.Comment: 9 pages, 9 figures, revised in response to comments of referee. Table
added, extended discussion, accepted MNRA
Mean Field Theory of Spherical Gravitating Systems
Important gaps remain in our understanding of the thermodynamics and
statistical physics of self-gravitating systems. Using mean field theory, here
we investigate the equilibrium properties of several spherically symmetric
model systems confined in a finite domain consisting of either point masses, or
rotating mass shells of different dimension. We establish a direct connection
between the spherically symmetric equilibrium states of a self-gravitating
point mass system and a shell model of dimension 3. We construct the
equilibrium density functions by maximizing the entropy subject to the usual
constraints of normalization and energy, but we also take into account the
constraint on the sum of the squares of the individual angular momenta, which
is also an integral of motion for these symmetric systems. Two new statistical
ensembles are introduced which incorporate the additional constraint. They are
used to investigate the possible occurrence of a phase transition as the
defining parameters for each ensemble are altered
Baxterization, dynamical systems, and the symmetries of integrability
We resolve the `baxterization' problem with the help of the automorphism
group of the Yang-Baxter (resp. star-triangle, tetrahedron, \dots) equations.
This infinite group of symmetries is realized as a non-linear (birational)
Coxeter group acting on matrices, and exists as such, {\em beyond the narrow
context of strict integrability}. It yields among other things an unexpected
elliptic parametrization of the non-integrable sixteen-vertex model. It
provides us with a class of discrete dynamical systems, and we address some
related problems, such as characterizing the complexity of iterations.Comment: 25 pages, Latex file (epsf style). WARNING: Postscript figures are
BIG (600kB compressed, 4.3MB uncompressed). If necessary request hardcopy to
[email protected] and give your postal mail addres
An Overview of the 13:8 Mean Motion Resonance between Venus and Earth
It is known since the seminal study of Laskar (1989) that the inner planetary
system is chaotic with respect to its orbits and even escapes are not
impossible, although in time scales of billions of years. The aim of this
investigation is to locate the orbits of Venus and Earth in phase space,
respectively to see how close their orbits are to chaotic motion which would
lead to unstable orbits for the inner planets on much shorter time scales.
Therefore we did numerical experiments in different dynamical models with
different initial conditions -- on one hand the couple Venus-Earth was set
close to different mean motion resonances (MMR), and on the other hand Venus'
orbital eccentricity (or inclination) was set to values as large as e = 0.36 (i
= 40deg). The couple Venus-Earth is almost exactly in the 13:8 mean motion
resonance. The stronger acting 8:5 MMR inside, and the 5:3 MMR outside the 13:8
resonance are within a small shift in the Earth's semimajor axis (only 1.5
percent). Especially Mercury is strongly affected by relatively small changes
in eccentricity and/or inclination of Venus in these resonances. Even escapes
for the innermost planet are possible which may happen quite rapidly.Comment: 14 pages, 11 figures, submitted to CMD
- …
