The wave functions of Boson and Fermion gases are known even when the
particles have harmonic interactions. Here we generalise these results by
solving exactly the N-body Schrodinger equation for potentials V that can be
any function of the sum of the squares of the distances of the particles from
one another in 3 dimensions. For the harmonic case that function is linear in
r^2. Explicit N-body solutions are given when U(r) = -2M \hbar^{-2} V(r) =
\zeta r^{-1} - \zeta_2 r^{-2}. Here M is the sum of the masses and r^2 = 1/2
M^{-2} Sigma Sigma m_I m_J ({\bf x}_I - {\bf x}_J)^2. For general U(r) the
solution is given in terms of the one or two body problem with potential U(r)
in 3 dimensions. The degeneracies of the levels are derived for distinguishable
particles, for Bosons of spin zero and for spin 1/2 Fermions. The latter
involve significant combinatorial analysis which may have application to the
shell model of atomic nuclei. For large N the Fermionic ground state gives the
binding energy of a degenerate white dwarf star treated as a giant atom with an
N-body wave function. The N-body forces involved in these extraordinary N-body
problems are not the usual sums of two body interactions, but nor are forces
between quarks or molecules. Bose-Einstein condensation of particles in 3
dimensions interacting via these strange potentials can be treated by this
method.Comment: 24 pages, Latex. Accepted for publication in Proceedings of the Royal
Societ