2,486 research outputs found

    On Cardiac Irregularities

    Get PDF

    Uncertainties of predictions of future atmospheric CO2 concentrations

    Get PDF
    Linear carbon cycle models, tuned to reproduce the CO2 increase observed at Mauna Loa, independently of their individual assumptions, predict almost identical CO2 concentration trends for fossil energy scenarios assuming a slightly increasing production in the next few decades. The basic information for such prognoses therefore is the airborne fraction observed over the last 20 years. Uncertainties in this quantity are due to possible errors in the estimate of fossil fuel consumption and the corresponding CO2 emission, possible natural fluctuations in the baseline CO2 level, and uncertainties regarding the biospheric CO2 input and uptake as a result of deforestation and reforestation and land management. Depending on different assumptions the effective airborne fraction, defined as the ratio of CO2 increase due to fossil fuel CO2 alone to the integrated CO2 production, might be as low as 0.38 or as high as 0.72, compared to the apparent airborne fraction of 0.55. The effective airborne fraction derived from carbon cycle models, considering only the CO2 uptake by the ocean, lies in the range 0.60–0.70. A value as low as 0.40 seems therefore highly improbable. A high biospheric anthropogenic CO2 input therefore must have been accompanied by a high CO2 fertilization effect. Model considerations, however, are not in contradiction with a high biospheric input with the maximum production before 1958, which also would imply low preindustrial CO2 concentrations in the range 270–280 ppm as reported recently

    “Will We Ever Learn?”

    Get PDF

    COCAP : a carbon dioxide analyser for small unmanned aircraft systems

    Get PDF
    Unmanned aircraft systems (UASs) could provide a cost-effective way to close gaps in the observation of the carbon cycle, provided that small yet accurate analysers are available. We have developed a COmpact Carbon dioxide analyser for Airborne Platforms (COCAP). The accuracy of COCAP's carbon dioxide (CO2) measurements is ensured by calibration in an environmental chamber, regular calibration in the field and by chemical drying of sampled air. In addition, the package contains a lightweight thermal stabilisation system that reduces the influence of ambient temperature changes on the CO2 sensor by 2 orders of magnitude. During validation of COCAP's CO2 measurements in simulated and real flights we found a measurement error of 1.2 mu mol mol(-1) or better with no indication of bias. COCAP is a self-contained package that has proven well suited for the operation on board small UASs. Besides carbon dioxide dry air mole fraction it also measures air temperature, humidity and pressure. We describe the measurement system and our calibration strategy in detail to support others in tapping the potential of UASs for atmospheric trace gas measurements.Peer reviewe

    Diagnostic and Therapeutic Challenges

    Get PDF
    This case is submitted by Drs. Salvador Pastor-Idoate, Manchester Royal Eye Hospital, and Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester CRF, United Kingdom; Heinrich Heimann, Royal Liverpool and Broadgreen University Hospitals NHS Trust; Pearse A. Keane, Moorfields Eye Hospital, London, United Kingdom, and Konstantinos Balaskas; Manchester Royal Eye Hospital, Manchester, United Kingdom; commented by Dr. Brandon J. Lujan, Portland, Oregon

    Experimental evaluation of confidence interval procedures in sequential steady-state simulation

    Get PDF
    Sequential analysis of simulation output is generally accepted as the most efficient way for securing representativeness of samples of collected observations. In this scenario a simulation experiment is stopped when the relative precision of estimates, defined as the relative width of confidence intervals at an assumed confidence level, reaches the required level. This paper deals with the statistical correctness of the methods proposed for estimating confidence intervals for mean values in sequential steady-state stochastic simulation. We formulate basic rules that should be followed in proper experimental analysis of coverage of different steadystate interval estimators. Our main argument is that such analysis should be done sequentially. The numerical results of our preliminary coverage analysis of the method of Spectral Analysis (SA/HW) and Nonoverlapping Batch Means are presented, and compared with those obtained by traditional, non-sequential approaches

    Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    Full text link
    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E=1.1104\Delta E/E = 1.1\cdot 10^{-4} and wave-number resolution of Δk/k=3103\Delta k/k = 3\cdot 10^{-3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/5.2/\AA\ in 100 separate bins, with only 0.34\% wavenumber blurring. The dispersion of 0.418~eV/13.5μ13.5\,\mum agrees with predictions within 1.3\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure

    Требования к узлу сопряжения секций геохода

    Get PDF
    Проведен анализ работы узла сопряжения секций (УСС) геохода. Сформированы требования к узлу сопряжения секций геохода.The analysis of the operation of the bearing unit of the geokhod is carried out. The requirements for the bearing unit of the geokhod are formed
    corecore