10 research outputs found

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 μm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Context aware mobile application architecture (CAMAA) for health care systems: Standardization and abstraction of context aware layers

    No full text
    Context awareness was introduced recently in several fields in quotidian human activities. Among context aware applications, health care systems are the most important ones. Such applications, in order to perceive the context, rely on sensors which may be physical or virtual. However, these applications lack of standardization in handling the context and the perceived sensors data. In this work, we propose a formal context aware application architecture model to deal with the context taking into account the scalability and interoperability as key features towards an abstraction of the context relatively to end user applications. As a proof of concept, we present also a case study and simulation explaining the operational aspect of this architecture in health care systems

    Reliable user profile analytics and discovery on social networks

    No full text
    In this paper, we introduce heterogeneous methods to analyze and discover user profiles on Online Social Networks (OSNs).We are the first to investigate such methods to profile users on multiple OSNs (Facebook, Twitter, Google+, etc.). In addition, we perform reliable analytics, i.e., users in the datasets are identical. Deeply speaking, if we have a dataset of n number of user profiles on Facebook, we do not analyze n different profiles on corresponding OSN. However, we first perform a user Profile Matching (PM) task from a seed dataset (Facebook for instance) and then match these profiles inside this dataset to their corresponding profiles on other OSNs, then we start our User Profile Analysis and Discovery task (UPAD). We show that our UPAD methods uncover very interesting facts about OSN users

    Electrons create a reaction

    No full text

    Risk of thromboembolic events in non-hospitalized COVID-19 patients: A systematic review

    No full text
    International audienceThe risk of thromboembolism in non-hospitalized COVID-19 patients remains uncertain and was assessed in this review to better weigh benefits vs. risks of prophylactic anticoagulation in this population. A search was performed through three databases: Medline, Embase, and Cochrane Library until 2022. Self-controlled case series, case-control and cohort studies were included, and findings summarized narratively. Meta-analyses for risk of thromboembolism including deep vein thrombosis (DVT), pulmonary embolism (PE), and myocardial infarction (MI) between COVID-19 and non-COVID-19 non-hospitalized patients were conducted. Frequency, incidence rate ratio (IRR), and risk ratio (RR) of stroke were used to assess risk in non-hospitalized COVID-19 patients considering the lack of studies to conduct a meta-analysis. Ten studies met inclusion criteria characterized by adult non-hospitalized COVID-19 patients. Risk of bias was relatively low. Risk of DVT (RR: 1.98 with 95% CI: 1.03-3.83) and PE (OR: 6.72 with 95% CI: 4.81-9.39 and RR: 4.44 with 95% CI: 1.98-9.99) increased in nonhospitalized COVID-19 patients compared to controls. Risk of MI (OR: 1.91 with 95% CI: 0.89-4.09) is possibly increased in non-hospitalized COVID-19 patients with moderate certainty when compared to controls. A trend in favor of stroke was documented in the first week following infection. Our meta-analyses support the increase in risk of DVT and PE, and likely increase of MI, in non-hospitalized COVID-19 patients. The risk of stroke appears significant in the first week following infection but drops to insignificance two weeks later. More studies are needed to establish evidence-based recommendations for prophylactic anticoagulation therapy in non-hospitalized COVID-19 patients

    Locally Induced and Self-Induced "Electroclick" onto a Self-Assembled Monolayer: Writing and Reading with SECM under Unbiased Conditions

    No full text
    International audienceLocalized “electroclick” was achieved on azido-terminated self-assembled monolayers using Scanning Electrochemical Microscopy (SECM) in feedback mode, in which the substrate is not electrically connected (unbiased conditions). The method allows both the local immobilization of diverse functional moieties and the monitoring of each modification step at a micrometer scale. Conditions of the “click” coupling reaction were optimized especially to avoid the deposit of metallic copper by the choice of a specific ligand to stabilize the Cu(I) species. The catalytic efficiency in localized “electroclick” reaction of Cu(II)TMPA (TMPA: tris(2-pyridylmethyl)amine) as the “click” catalyst was compared with a derivative containing an alkyne group Cu(II)6eTMPA, the same molecule playing the role of the catalyst and the substrate. Evidences for surface self-catalysis propagation are demonstrated through SECM imaging showing a random 2D progression of the catalytic modification

    Local control of protein binding and cell adhesion by patterned organic thin films

    No full text
    corecore