370 research outputs found

    Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    Get PDF
    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given

    Extracting the depolarization coefficient D_NN from data measured with a full acceptance detector

    Full text link
    The spin transfer from vertically polarized beam protons to Lambda or Sigma hyperons of the associated strangeness production pp -> pK Lambda (Sigma) is described with the depolarization coefficient D_NN. As the polarization of the hyperons is determined by their weak decays, detectors, which have a large acceptance for the decay particles, are needed. In this paper a formula is derived, which describes the depolarization coefficient D_NN by count rates of a 4 pi detector. It is shown, that formulas, which are given in publications for detectors with restricted acceptance, are specific cases of this formula for a 4 pi detector.Comment: Accepted for publication by Nuclear Instruments and Methods in Physics Research Section

    Accommodation of lattice mismatch in Ge_(x)Si_(1−x)/Si superlattices

    Get PDF
    We present evidence that the critical thickness for the appearance of misfit defects in a given material and heteroepitaxial structure is not simply a function of lattice mismatch. We report substantial differences in the relaxation of mismatch stress in Ge_(0.5)Si_(0.5)/Si superlattices grown at different temperatures on (100) Si substrates. Samples have been analyzed by x‐ray diffraction, channeled Rutherford backscattering, and transmission electron microscopy. While a superlattice grown at 365 °C demonstrates a high degree of elastic strain, with a dislocation density <10^5 cm^(−2) , structures grown at higher temperatures show increasing numbers of structural defects, with densities reaching 2×10^(10) cm^(−2) at a growth temperature of 530 °C. Our results suggest that it is possible to freeze a lattice‐mismatched structure in a highly strained metastable state. Thus it is not surprising that experimentally observed critical thicknesses are rarely in agreement with those predicted by equilibrium theories

    Effects of exciton deconfinement on the transient photoluminescence from thermally activated delayed fluorescence host-guest systems

    Get PDF
    For thermally activated delayed fluorescence (TADF) host-guest systems used in organic light-emitting diodes, understanding of the transient photoluminescence (PL) measurements is crucial for accurate determination of the photophysical rates of the emitter. Here, we study how the PL is affected by triplet-exciton deconfinement from the guest to the host molecules. This deconfinement can complicate the analysis of the PL decay and potentially lead to a loss of efficiency. From an analytical model, we find that the transient PL intensity remains bi-exponential in the presence of exciton deconfinement for the case of fast triplet diffusion, albeit with a longer decay time of the delayed component. Deconfinement might, therefore, not always be recognizable from a single transient PL measurement. The role of deconfinement depends on the energetic disorder, the guest concentration, and the energy difference Δ E T between triplet-exciton energies on the host and guest molecules and is effectively suppressed for Δ E T &gt; - &gt; 0.2 eV. We find from analytical modeling and kinetic Monte Carlo simulations that the decay can become non-bi-exponential and even show a distinct third decay step. The shape of the decay curves depends on the characteristic times for guest-host transfer and host diffusion, relative to the prompt and delayed decay times of the TADF emitter. A comparison with available experimental data is included, finding qualitative agreement with dedicated deconfinement studies and indicating the influence of other processes for the often observed power-law decay at long time scales. </p

    Accurate Determination of the Neutron Skin Thickness of \u3csup\u3e208\u3c/sup\u3ePb

    Get PDF
    We report a precision measurement of the parity-violating asymmetry Apv in the elastic scattering of longitudinally polarized electrons from 208Pb. We measure Apv = 550 ± 16(stat) ± 8(syst) parts per billion, leading to an extraction of the neutral weak form factor Fw (Q2 = 0.00616 GeV2) = 0.368 ± 0.013. Combined with our previous measurement, the extracted neutron skin thickness is Rn - Rp = 0.283 ± 0.071 fm. The result also yields the first significant direct measurement of the interior weak density of 208Pb: ρ0w = -0.0796 ± 0.0036(exp) ± 0.0013(theo) fm-3) leading to the interior baryon density ρ0b)= 0.1480 ± 0.0036(exp) ± 0.0013(theo) fm-3. The measurement accurately constrains the density dependence of the symmetry energy of nuclear matter near saturation density, with implications for the size and composition of neutron stars

    Numerical elimination and moduli space of vacua

    Get PDF
    We propose a new computational method to understand the vacuum moduli space of (supersymmetric) field theories. By combining numerical algebraic geometry (NAG) and elimination theory, we develop a powerful, efficient, and parallelizable algorithm toextract important information such as the dimension, branch structure, Hilbert series and subsequent operator counting, as well as variation according to coupling constants and mass parameters. We illustrate this method on a host of examples from gauge theory, string theory, and algebraic geometry

    Strain relaxation kinetics in Si1–xGex/Si heterostructures

    Get PDF
    Strain relaxation in Si1–xGex/Si superlattices and alloy films is studied as a function of ex situ anneal treatment with the use of x-ray diffraction and Raman spectroscopy. Samples are grown by molecular-beam epitaxy at an unusually low temperature (≈365 °C). This results in metastably strained alloy and superlattice films significantly in excess of critical thicknesses previously reported for such structures. Significant strain relaxation is observed upon anneal at temperatures as low as 390 °C. After a 700 °C, 2 h anneal, superlattices are observed to relax less fully (~43% of coherent strain) than corresponding alloys (~84% of coherent strain). Also, the strain relaxation kinetics of a Si1–xGex alloy layer is studied quantitatively. Alloy strain relaxation is approximately described by a single, thermally activated, first order kinetic process having activation energy Ea=2.0 eV. The relevance of our results to the microscopic mechanisms responsible for strain relaxation in lattice-mismatched semiconductor heterostructures is discussed

    New Measurements of the Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering Over a Range of Spin-0 Nuclei

    Get PDF
    We report precision determinations of the beam-normal single spin asymmetries (An) in the elastic scattering of 0.95 and 2.18 GeV electrons off 12C, 40Ca, 48Ca, and 208Pb at very forward angles where the most detailed theoretical calculations have been performed. The first measurements of An for 40Ca and 48Ca are found to be similar to that of 12C, consistent with expectations and thus demonstrating the validity of theoretical calculations for nuclei with Z ≤ 20. We also report An for 208Pb at two new momentum transfers (Q2) extending the previous measurement. Our new data confirm the surprising result previously reported, with all three data points showing significant disagreement with the results from the Z ≤ 20 nuclei. These data confirm our basic understanding of the underlying dynamics that govern An for nuclei containing ≲ 50 nucleons, but point to the need for further investigation to understand the unusual An behavior discovered for scattering off 208Pb
    corecore