308 research outputs found

    Cascaded Microwave Photonic Filters for Side Mode Suppression in a Tunable Optoelectronic Oscillator applied to THz Signal Generation & Transmission

    Get PDF
    We demonstrate experimentally an optoelectronic oscillator (OEO) in which high side-mode suppression is achieved by cascading a phase modulator-based single passband tunable microwave photonic (MWP) filter with an optoelectronic feedback loop-based infinite impulse response (IIR) MWP filter. The OEO provides an RF oscillation that can be tuned from 6.5 GHz to 17.8 GHz with a phase noise lower than -103 dBc/Hz. Experimental results show that inclusion of the IIR section leads to a 20 dB reduction of phase noise close to the carrier and an increase of 10 dB in side mode suppression, compared to the equivalent OEO without an IIR section. The OEO was used to drive an optical frequency comb generator to generate a THz signal at 242.6 GHz by optical heterodyning; inclusion of the IIR section increases suppression of the side modes neighboring the THz carrier. A radio over fiber link was then implemented at a 242.6 GHz carrier frequency, with transmission of a 24 Gbps signal over 40 km of fiber and a 30 cm wireless path at a bit error rate below the forward error correction limit. The proposed system may be applied to frequency reconfigurable THz links and radars

    Tunable THz Signal Generation and Radioover-Fiber Link based on an Optoelectronic Oscillator-driven Optical Frequency Comb

    Get PDF
    We propose and demonstrate experimentally a photonic THz signal generation technique based on a tunable optoelectronic oscillator (OEO), and its application in a radio over fiber (RoF) link. The OEO's is tuned by varying the bandwidth of a tunable optical bandpass filter (TOBF) that is cascaded with a phase modulator (PM). The resulting tunable microwave photonic filter is used to generate OEO oscillations from 6.58 GHz up to 18.36 GHz (with a phase noise of ≤−103dBc/Hz at 10 kHz offset from the carrier frequency). The OEO is subsequently used to drive an optical comb, generating 22 comb lines with a frequency spacing of 17.33 GHz covering a bandwidth of 360 GHz within a 20 dB envelope. By selecting two optical comb lines with a wavelength selective switch (WSS) and beating them in a uni-traveling carrier photodiode (UTC-PD), THz signals are generated at 101.5 GHz and 242.6 GHz with phase noise of -90 dBc/Hz and -78 dBc/Hz, respectively at 10 kHz offset from carrier frequency. Tunable mm-wave and THz signals can be generated either by changing the OEO oscillation frequency or the selected comb lines. Using the OEO driven OFCG, we implemented a RoF link at 242.6 GHz with a data rate of 24 Gbps over a wireless distance of 30 cm and with a bit error rate (BER) below the hard decision forward error correction (FEC) limit of 3.8×10−3 . This method allows the creation of an allphotonic frequency reconfigurable THz signal generator and RoF system

    An Exploration of Modified Microwave-assisted Rapid Hydrothermal Liquefaction Process for Conversion of Palm Kernel Shells to Bio-oil

    Get PDF
    Bio-oil is one of the potential resources to address the sustainable energy development and environmental issues. Microwave-assisted Rapid Hydrothermal Liquefaction Process is one of the popular techniques that is used to extract bio-oil from biomass. In this paper, the bio-oil has been extracted from Palm Kernel Shells by using microwave-assisted and conventional heating pyrolysis processes. A modified heating mantle apparatus are used to conduct the experiment for extracting the bio-oil. The experiments are conducted by varying the hydrothermal temperature and time for both techniques to achieve the conversion of the bio-oil from the raw material. It is found that the yield of bio-oil for microwave-assisted Rapid Hydrothermal Liquefaction Process at 350°C and 400°C are from 10.70 wt% to 25.60 wt% within hydrothermal time 6, 9 and 12 minutes. The pH value of the bio-oil is acidic with the range from 3 to 4. The calorific value of the bio-oil is varied from 24 to 26 MJ/kg for both conversion methods. Fourier Transform Infrared Spectroscopy (FTIR) result reveals that multiple functional groups (alcohol, aldehydes, carboxylic acid and ketones) are present in the PKS bio-oil

    Photonic THz Generation using Optoelectronic Oscillator-driven Optical Frequency Comb Generator

    Get PDF
    We propose and experimentally demonstrate a photonic THz signal generation technique combining a discrete optoelectronic oscillator (OEO) and optical frequency comb (OFC) generator. Using a microwave photonic filter (MPF), we generate an electrical oscillation up to 17.33 GHz with a phase noise of -103 dBc/Hz at 10 kHz offset frequency. The OEO frequency tunability is obtained by changing the bandwidth of a tunable optical band pass filter (TOBF). This can produce an electrical RF carrier from 6.58 GHz - 18.36 GHz. The OEOdriven optical comb generates 22 optical comb lines with a frequency spacing of 17.33 GHz covering a bandwidth of 360 GHz. By selecting two optical comb lines using a wavelength selective switch (WSS) and beating them in a uni-travelling carrier photodiode (UTC-PD), a THz wave is generated at 242.6 GHz with a phase noise of -78 dBc/Hz at 10 kHz offset frequency. This technique has potential for use in THz signal generation where it is possible to tune the THz carrier frequency by tuning the RF carrier generated from the OEO

    Wheat (Triticum aestivum l.) production under drought and heat stress – adverse effects, mechanisms and mitigation: A review

    Get PDF
    Heat and drought stresses are the most important abiotic factors that reduce crops productivity by affecting various physiological and biochemical processes. Thus, selecting cultivars with better drought or heat stress tolerance or breeding for stress tolerance will be helpful in enhancing crop productivity under harsh environments. This review elaborates the physiological basis of high temperature and drought stress tolerance in wheat which can be used as selection criteria in wheat breeding program. In addition, some agronomic selection criteria which are valid and useful in selecting stress tolerant wheat species and cultivars. The review also discussed the valid usage of stress tolerance indices (such as mean productivity (MP), geometric mean productivity (GMP), yield index (YI), yield stability index (YSI), relative productivity (RP%), stress susceptibility index (SSI), and the tolerance index (TOL)) to scan the genotypes against drought and heat stress. Beside these, exogenous application of stress signaling compounds, osmolytes, or certain inorganic salts play a vital role for alleviating adverse effects of abiotic stresses for sustainable wheat production. In addition, applications for soil amendments will also helpful in increasing wheat crop productivity under stressful conditions. All these strategies may be helpful to meet the food demands of the increasing population.Fil: El Sabagh, A.. University of Kafrelsheikh; EgiptoFil: Hossain, A.. Bangladesh Agricultural Research Institute; BangladeshFil: Barutçular, C.. University of Çukurova; TurquíaFil: Islam, Mohammad Sirajul. Hajee Mohammad Danesh Science and Technology University; BangladeshFil: Awan, S. I.. University of the Poonch; PakistánFil: Galal, A.. University of Kafrelsheikh; EgiptoFil: Iqbal, M. A.. University of the Poonch; PakistánFil: Sytar, O.. Slovak University of Agriculture; EslovaquiaFil: Yildirim, M.. Dicle University; TurquíaFil: Meena, R. S.. Inistitute of Agricultural Sciences; IndiaFil: Fahad, S.. The University of Swabi; PakistánFil: Najeeb, U.. The University of Queensland; AustraliaFil: Konuskan, O.. Mustafa Kemal University; TurquíaFil: Habib, R. A.. Bahauddin Zakariya University; PakistánFil: Llanes, Analia Susana. Universidad Nacional de Rio Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones Agrobiotecnológicas - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Agrobiotecnológicas; Argentina. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; ArgentinaFil: Hussain, S.. University of Agriculture; PakistánFil: Farooq, M.. Sultan Qaboos University; OmánFil: Hasanuzzaman, M.. Sher-e-Bangla Agricultural University; BangladeshFil: Abdelaal, K. H.. Kafrelsheikh University; EgiptoFil: Hafez, Y.. Kafrelsheikh University; EgiptoFil: Cig, F.. Siirt University; TurquíaFil: Saneoka, H.. Hiroshima University; Japó

    Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass

    Get PDF
    Overseeded perennial ryegrass (Lolium perenne L.) turf on dormant bermudagrass (Cynodon dactylon Pers. L) in transitional climatic zones (TCZ) experience a severe reduction in its growth due to cold stress. Primary plant nutrients play an important role in the cold stress tolerance of plants. To better understand the cold stress tolerance of overseeded perennial ryegrass under TCZ, a three-factor and five-level central composite rotatable design (CCRD) with a regression model was used to study the interactive effects of nitrogen (N), phosphorus (P), and potassium (K) fertilization on lipid peroxidation, electrolyte leakage, reactive oxygen species (ROS) production, and their detoxification by the photosynthetic pigments, enzymatic and non-enzymatic antioxidants. The study demonstrated substantial effects of N, P, and K fertilization on ROS production and their detoxification through enzymatic and non-enzymatic pathways in overseeded perennial ryegrass under cold stress. Our results demonstrated that the cold stress significantly enhanced malondialdehyde, electrolyte leakage, and hydrogen peroxide contents, while simultaneously decreasing ROS-scavenging enzymes, antioxidants, and photosynthetic pigments in overseeded perennial ryegrass. However, N, P, and K application mitigated cold stress-provoked adversities by enhancing soluble protein, superoxide dismutase, peroxide dismutase, catalase, and proline contents as compared to the control conditions. Moreover, N, P, and, K application enhanced chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in overseeded perennial ryegrass under cold stress as compared to the control treatments. Collectively, this 2−years study indicated that N, P, and K fertilization mitigated cold stress by activating enzymatic and non-enzymatic antioxidants defense systems, thereby concluding that efficient nutrient management is the key to enhanced cold stress tolerance of overseeded perennial ryegrass in a transitional climate. These findings revealed that turfgrass management will not only rely on breeding new varieties but also on the development of nutrient management strategies for coping cold stress

    Numerical analysis of different heating systems for warm sheet metal forming

    Get PDF
    The main goal of this study is to present an analysis of different heating methods frequently used in laboratory scale and in the industrial practice to heat blanks at warm temperatures. In this context, the blank can be heated inside the forming tools (internal method) or using a heating system (external method). In order to perform this analysis, a finite element model is firstly validated with the simulation of the direct resistance system used in a Gleeble testing machine. The predicted temperature was compared with the temperature distribution recorded experimentally and a good agreement was found. Afterwards, a finite element model is used to predict the temperature distribution in the blank during the heating process, when using different heating methods. The analysis also includes the evaluation of a cooling phase associated to the transport phase for the external heating methods. The results of this analysis show that neglecting the heating phase and a transport phase could lead to inaccuracies in the simulation of the forming phase.The authors gratefully acknowledge the financial support of the Portuguese Foundation for Science and Technology (FCT) under project PTDC/EMS-TEC/1805/2012 and by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade, under the project CENTRO-07-0224-FEDER-002001 (MT4MOBI). The authors would like to thank Prof. A. Andrade-Campos for helpful contributions on the development of the finite element code presented in this work.info:eu-repo/semantics/publishedVersio

    Geographical migration and fitness dynamics of Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59–1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient

    Differential livelihood adaptation to social-ecological change in coastal Bangladesh

    No full text
    Social-ecological changes, brought about by the rapid growth of the aquaculture industry and the increased occurrence of climatic stressors, have significantly affected the livelihoods of coastal communities in Asian mega-deltas. This paper explores the livelihood adaptation responses of households of different wealth classes, the heterogeneous adaptation opportunities, barriers and limits (OBLs) faced by these households and the dynamic ways in which these factors interact to enhance or impede adaptive capacities. A mixed methods approach was used to collect empirical evidence from two villages in coastal Bangladesh. Findings reveal that households’ adaptive capacities largely depend on their wealth status, which not only determine their availability of productive resources, but also empower them to navigate social-ecological change in desirable ways. Households operate within a shared response space, which is shaped by the broader socio-economic and political landscape, as well as their previous decisions that can lock them in to particular pathways. While an adaptive response may be effective for one social group, it may cause negative externalities that can undermine the adaptation options and outcomes of another group. Adaptation OBLs interact in complex ways; the extent to which these OBLs affect different households depend on the specific livelihood activities being considered and the differential values and interests they hold. To ensure more equitable and environmentally sustainable livelihoods in future, policies and programs should aim to expand households’ adaptation space by accounting for the heterogeneous needs and complex interdependencies between response processes of different groups

    ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes

    Get PDF
    International audienceBACKGROUND: Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. METHODS AND FINDINGS: We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr(-/-)Apob(100/100)). CONCLUSIONS: Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome
    • …
    corecore