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Geographical migration and fitness 
dynamics of Streptococcus pneumoniae

Sophie Belman1,2,3 ✉, Noémie Lefrancq2, Susan Nzenze4, Sarah Downs5, Mignon du Plessis6,7, 
Stephanie W. Lo1,8, The Global Pneumococcal Sequencing Consortium*, Lesley McGee9, 
Shabir A. Madhi5,10, Anne von Gottberg6,7,11, Stephen D. Bentley1,67 & Henrik Salje2,67

Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. 
Many different serotypes co-circulate endemically in any one location1,2. The extent 
and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial 
resistance remain largely unquantified. Here using geolocated genome sequences 
from South Africa (n = 6,910, collected from 2000 to 2014), we developed models  
to reconstruct spread, pairing detailed human mobility data and genomic data. 
Separately, we estimated the population-level changes in fitness of strains that  
are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in 
pneumococcal conjugate vaccines, first implemented in South Africa in 2009. 
Differences in strain fitness between those that are and are not resistant to penicillin 
were also evaluated. We found that pneumococci only become homogenously  
mixed across South Africa after 50 years of transmission, with the slow spread driven 
by the focal nature of human mobility. Furthermore, in the years following vaccine 
implementation, the relative fitness of NVT compared with VT strains increased 
(relative risk of 1.68; 95% confidence interval of 1.59–1.77), with an increasing proportion 
of these NVT strains becoming resistant to penicillin. Our findings point to highly 
entrenched, slow transmission and indicate that initial vaccine-linked decreases in 
antimicrobial resistance may be transient.

The greatest public health burden from infectious diseases remains 
stubbornly endemic pathogens. Once established, pathogens such 
as Mycobacterium tuberculosis, HIV and, now, SARS-CoV-2 are difficult 
to control, even when vaccines are available1. Their persistence in the 
population can be partially explained by the co-circulation of multiple 
strains of the same pathogen. Endemic pathogens are complicated 
to study as we rarely understand the mechanisms that drive spread, 
including the role of human behaviour and why some lineages increase 
in prevalence over time whereas others disappear. Underlying genetic 
diversity is particularly extreme in the case of the bacterium S. pneu-
moniae (the pneumococcus), which is the leading cause of morbidity 
and mortality worldwide because of lower respiratory infections2–4. 
The pneumococcus comprises >100 known antigenically distinct sero-
types and >900 classified lineages (also known as global pneumococcal 
sequence clusters (GPSCs))5–7. Moreover, it is not uncommon for more 
than 30 antigenically distinct serotypes to co-circulate within a coun-
try or region or for a human host to concurrently carry multiple sero-
types8. We refer to lineage synonymously with GPSC, whereas a strain 

references any particular circulating phenotype (including specific 
serotypes and antimicrobial resistance (AMR)). Here we develop math-
ematical models using thousands of geolocated genome sequences 
from South Africa collected over a 15-year period to clarify several 
key uncertainties in pneumococcal migration. We model the rate and 
breadth of mobility geographically and how fitness changes linked to 
vaccine implementation and AMR may affect its spread.

The pneumococcus resides in the human upper respiratory tract. 
Carriage is a prerequisite for disease, and rates of carriage in children 
under 5 years old range from 20 to 90%9. Occasionally, asymptomatic 
carriage goes on to cause local infections such as otitis media or, more 
severely, invasive pneumonia and meningitis. More than 500,000 deaths 
per year linked to pneumococcus are estimated to occur globally3,10. 
Penicillin was first used to treat pneumococcal disease in the 1930s, 
and it successfully reduced pneumococcal disease until the late 1960s 
when penicillin non-susceptibility was first noted. Multidrug-resistant 
strains were described soon after penicillin resistance11,12. By 2019, 19% 
of deaths associated with AMR had pneumococcal aetiology13. In this 
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context, vaccines are pivotal to disease control. A pneumococcal poly-
saccharide vaccine that included 23 serotypes was licensed in the USA 
in 1983. However, the absence of mucosal immunity has seen it replaced 
by pneumococcal conjugate vaccines (PCVs) except for in older adults 
and immunocompromised individuals14. PCVs (conjugated with toxin to 
stimulate mucosal immunity) target a small subset of the polysaccharide 
capsular serotypes, with the most common formulations including PCV7 
and PCV13 (Pfizer)15 and PCV10 (GlaxoSmithKline)16. These target 7, 13 
and 10 serotypes, respectively (with all the serotypes included within 
PCV7 and PCV10 also included within PCV13). In 2021, additional PCV 
formulations, PCV15 (Merck) and PCV20 (Pfizer), were licensed for use 
in the USA and Europe17. Pneumococcal vaccination is dynamic, and 
new vaccine compositions are frequently tested. Vaccine serotypes are 
often selected because of their high prevalence and AMR among dis-
ease isolates from infants and children. PCVs are now included in 76% of 
national immunization schedules, with different formulations in differ-
ent countries. For example, in South Africa, PCV7 was implemented in 
2009 and replaced by PCV13 in 2011, excluding PCV10 (ref. 18). Despite 
their success at reducing disease, their use has been linked to serotype 
replacement by NVTs in both invasive pneumococcal disease (IPD) and 
carriage8,19–21. In South Africa, this has been characterized by increases in 
NVT serotypes 8 and 15B among IPD, and increases in NVT serotypes 16F, 
24, 35B and 11A among carriage isolates (8, 15B and 11A are now included 
in PCV20)20,22,23. Although there has been success in predicting the fitness 
of individual isolates based on the overall gene distribution in a popula-
tion, quantitative measures of fitness linked to the serotype of individual 
isolates are lacking24,25. This includes quantifying the time it takes after 
implementation for vaccines to affect the serotype composition in the 
country. Moreover, quantifying the serotype growth before and after 
vaccine implementation at different time points is needed. These are 
crucial knowledge gaps, as serotype distributions ultimately drive vaccine 
development and deployment strategies. In addition, vaccine implemen-
tation has resulted in reductions in AMR among both IPD and carriage 
isolates20,22,26. However, it remains unclear whether these reductions will 
persist over time at the population level or whether AMR may rebound.

Mathematical models applied to geolocated pathogen genome 
sequence data are useful to disentangle the changing prevalence of dif-
ferent lineages. However, most phylogeographical models focus on the 
rate of pathogen flow between locations, which represents the overall 
effect of multiple transmission chains. Such models therefore consider 
a different ecological scale to the specific behaviours of infected people 
and the surrounding population at each transmission generation27. The 
relationship between behaviours of individuals at each transmission 
step and the overall patterns of pathogen flow between locations are 
complex and nonlinear. Most existing phylogeographical approaches 
also struggle to account for changing levels of surveillance in both space 
and time. Here we develop mechanistic models that use the generation 
time distribution to estimate the number of transmission events that 
separate the most recent common ancestors (MRCAs) from each pair 
of tips in a time-resolved phylogeny. Taken together with measures of 
human mobility probabilities and human population distribution, we 
can infer mechanisms of pneumococcal migration at each transmission 
generation. We implemented this model with a focus on South Africa, 
where approximately 65% of children ≤5 years of age (35% across all age 
groups) carry the pneumococcus28,29. We incorporate both uncertainty 
in the phylogenetic reconstructions and sampling uncertainty through 
a bootstrapping approach30. We explore the robustness of our approach 
to highly biased observation processes using simulated data with known 
parameter values. Finally, we quantify the changing fitness of strains 
in response to vaccine introduction, including those containing AMR.

Quantifying spatial structure
In partnership with the South African National Institute for Communi-
cable Disease and the Wits Vaccines and Infectious Diseases Analytics 

Research Unit, we sequenced the whole genomes of isolates from each 
of South Africa’s nine provinces between 2000 and 2014 (n = 6,910, 
5,060 from individuals with invasive pneumococcal disease and 
1,850 from carriage studies) (Fig. 1a–c). Despite the large number of 
sequences, this dataset only represents a very small proportion (≪0.1%) 
of the circulating pneumococcus over this time period. We identified 
184 GPSCs with 69 different serotypes (31.9% NVT) (Fig. 1a,e and Sup-
plementary Table 1). This diversity persisted across provinces, and 
the distribution of serotypes within GPSCs did not follow a distinct 
geographical structure (Fig. 1a). In silico predicted AMR was com-
mon (penicillin, 48.2%; erythromycin, 17.3%, clindamycin, 11.2%; and 
co-trimoxazole: 68.4%), with similar distributions for isolates from 
both carriage and disease (Fig. 1f, Extended Data Fig. 10, Supplementary 
Fig. 13 and Supplementary Table 3).

Taking the 9 most dominant GPSCs in turn (each comprising more 
than 50 sequences, 2,575 sequences in total), we built recombination- 
free, time-resolved phylogenetic trees to determine the divergence 
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Fig. 1 | Descriptive summary of S. pneumoniae isolates. a, Phylogenetic tree 
of 6,910 South African isolates included in this study. Dominant GPSCs (n > 50) 
are in purple. GPSC1 (top) and GPSC5 (bottom) are highlighted. The columns 
describe the serotypes and provincial region for each isolate. The branch length 
legends refer to single nucleotide polymorphisms (SNPs) per site and trees are 
midpoint rooted. b, Map of the nine provinces of South Africa coloured by 
province. Scale bar is included in kilometres (km). c, Count of isolates (n = 6,910) 
per collection year from 2000 to 2014 used in the lineage-level analysis (black) 
and the 9 dominant GPSCs used in the divergence time analysis (maroon). d, The 
mean geographical distance for sequence pairs as a function of cumulative 
evolutionary distance across all GPSCs with 95% CI (blue). The model fit is shown 
in red. The implied true pattern of spread is shown in purple, after accounting 
for a biased observation process. e, The proportion of NVT serotypes across the 
study period. f, The proportion of in silico predicted AMR isolates for four drugs 
across the study period. The vertical lines denote the introduction of PCV7 in 
2009 and PCV13 in 2011. An interactive phylogeny and metadata are available  
at Microreact (https://microreact.org/project/7wqgd2gbBBEeBLLPKonbaT- 
belman2024southafricapneumococcus).
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times between sequence pairs (Extended Data Fig. 1a–i and Supple-
mentary Table 4). We included 1,157 genomes from 14 other countries 
in Africa and 2,944 from 31 countries outside Africa in our phyloge-
nies. We compared the geographical distance spread per divergence 
time between pairs in South Africa and found a clear geographical 
structure. The geographical distance between pairs increased from a 
mean distance of 142 km (95% confidence interval (CI) = 54–207 km) 
for those separated by less than 2 years of evolutionary time to 297 km 
(95% CI = 274–323 km) for those separated by 10–20 years (Fig. 1d). We 
obtained consistent results when using only sequences that came from 
individuals with disease (Supplementary Fig. 1A and Supplementary 
Table 5) and across the different GPSCs (Supplementary Fig. 2). This 
result is consistent with largely common patterns of spread irrespective 
of which particular GPSC an individual is infected with. Despite high 
heterogeneity in GPSC composition within any province, overall, pairs 
of isolates that are from the same province had 1.27 (95% CI = 1.23–1.31) 
times the relative risk (RR) of being the same GPSC compared with 
pairs of isolates from distant provinces (>1,000 km). This RR fell to 
1.09 (95% CI = 1.03–1.12) for pairs separated by 500–1,000 km (Fig. 2a 
and Supplementary Table 5). We obtained consistent results when we 
limited our analysis to only disease isolates and when we subsampled 
to have even numbers of sequences by province to mitigate sampling 
bias (Extended Data Fig. 2a,b and Supplementary Table 5). As there can 
be hundreds of years of diversity within a single GPSC, we refined the 
analysis by using different evolutionary windows of separation between 
pairs of isolates as determined from the phylogenetic trees. Pairs from 
the same province had 3.87 (95% CI = 3.01–5.1) times the RR of having a 
recent common ancestor (within 5 years) than distal pairs (>1,000 km 
apart) (Fig. 2b and Supplementary Table 5). However, as the evolution-
ary time between isolates increases the relative probability of being 
from the same province decreases, it is only after around 50 years that 
the pneumococcus seemed to be well mixed throughout the country 
(Fig. 2c–f and Supplementary Table 6). Furthermore, comparisons of 
the spatial location of closely related pairs showed that pneumococ-
cus flow was dominated by within-country movement compared with 
either movement between South Africa and other African countries 
or non-African countries (Fig. 2c–e, Supplementary Fig. 3A and Sup-
plementary Table 5). Recognizing that our samples span age groups, 
we stratified the analysis by the age difference between pairs. Genome 
pairs from individuals who were greater than 5 years apart in age took 
slightly longer to become mixed across South Africa (Supplementary 
Fig. 3B and Supplementary Table 7). These findings are consistent with 
a highly entrenched pathogen that moves slowly within a country and 
with slow cross-border transmission.

Inferring migration using human mobility
To understand whether human mobility can explain the slow spread 
of the pneumococcus, we built a mechanistic model of geographical 
spread fit to the nine dominant GPSCs and the observed province in 
which our genome sequences were isolated. We used the generation 
time distribution, time from one person being infected to infecting the 
next person (estimated mean of 35 days, standard deviation of 35 days 
(gamma distribution)) to translate branch lengths to the number of gen-
erations between pairs of sequences31,32 (Supplementary Fig. 4). Each 
transmission generation is an opportunity for pneumococcal mobility. 
We used directional human mobility probabilities between each of the 
234 South African municipalities from Meta Data for Good30 to infer the 
probable location of a single transmission event, allowing for mobility 
of both the infected individual and the surrounding susceptible popula-
tion. As Meta data captures mobility over a single day, we adjusted the 
duration in any cell to consider total mobility over the infectious period. 
Furthermore, as Meta users may act differently to those involved in 
pneumococcal transmission, we incorporated a parameter that allows 
individuals to have a different probability of staying within their home 

municipality than Meta users (Fig. 3b). We then calculated the probabil-
ity of pneumococcal movement between each pair of locations for each 
transmission generation. This approach integrates over all possible 
pathways linking two locations. We incorporated the probability of an 

<0.1

1.0

5.0

<0.1

1.0

5.0

<0.1

1.0

5.0

<0.1

1.0

5.0

W
ith

in
 p

ro
vi

nc
e

<
50

0 
km

50
0–

1,
00

0 
km

D
is

ta
nt

 p
ai

rs

O
th

er
 A

fr
ic

a

O
ut

si
d

e 
A

fr
ic

a

<0.1

1.0

5.0

Same GPSC

20–200 years

10–20 years

5–10 years

0–5 years

a

c

d

e

b

R
R

0 20 40 60

<0.1

1.00

>6.00

Evolutionary time

R
R

f

R
R

R
R

R
R

R
R

Fig. 2 | RR framework to determine geographical structure. a, RR of being 
the same GPSC within a province (blue), between different provinces over 
increasing distance (red) and compared with geographically distant pairs 
(>1,000 km) (reference). (South Africa; n = 6,910). b–e, RR of having a  
time to most recent common ancestor (tMRCA) 0–5 years (b), 5–10 years (c), 
10–20 years (d) and 20–200 years (e) ago within South African provinces (blue), 
across larger distances within South Africa (red), from South Africa to other 
countries in Africa (n = 1,157) (green), and from South Africa to countries 
outside of Africa (n = 2,944) (purple). All plots use a reference of pairs that are 
from distant provinces in South Africa (open triangle). f, RR of similarity over 
rolling 20-year windows of divergence times for pairs isolated within the same 
South African province compared with pairs from distant provinces in South 
Africa (>1,000 km apart). For a–f, plots are centred at the median and error bars 
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isolate being sequenced at each geographical location and within each 
collection year to account for the number of isolates being sequenced 
differing by year and location. We fit the model in a Bayesian framework 
using Markov chain Monte Carlo (MCMC). We compared the perfor-
mance of our models using the Meta data to a gravity model in which 
the probability of mobility is a function of the distance to a location and 
its population size (Extended Data Fig. 4). We also separately modelled 
mobility that depended on distance only.

Both the gravity model and the model that relied on Meta data were 
able to recover the observed spatial spread in pneumococcus (Fig. 1d, red 
line). However, model fit was better for the Meta data model (difference 
in deviance information criterion (DIC) of 3.4). Both these models out-
performed the distance-only model (Supplementary Table 8). The Meta 

data model showed that the relative proportion of the population car-
rying the pneumococcus per province at any time is strongly correlated 
with the population size in that province (R2 = 0.97, P ≤ 0.01; Fig. 3a). This 
model enabled us to infer the true underlying spread of pneumococcus 
(that is, in which we accounted for the biased observation process and 
mobility in both the infected individual and the surrounding susceptible 
population) (Fig. 1d, dashed line). We estimated that among individuals 
involved in pneumococcal transmission, the daily probability of staying 
in their home municipality was 94.3% (95% CI = 93.8–95.0%) (Fig. 3b, 
black squares) compared with 99.8% (ranging from 86.6% in Mogale City, 
Gauteng, to 99.9% in Ba-Phalaborwa, Limpopo) for Meta users (Fig. 3b, 
blue points). When we incorporated the mobility of both infector and 
infectee and accounted for the mobility across the infectious period, 
we estimated that after a single transmission generation (35 days), 53.1% 
(95% CI = 46.6–58.2) of strains remained in their starting municipality, 
22.8% (95% CI = 19.2–27.1%) were in a neighbouring municipality and a 
small minority were more than 500 km away (Fig. 3b, black points). As 
the number of transmission generations increased, the probability of 
reaching distal municipalities also increased (Fig. 3b). The size of the 
community seemed to be key to determining where lineages travel. 
After 1 year of sequential transmission, the probability of being in a 
municipality with a population size of >3 million people was 26.7 (95% 
CI = 19.8–40.10) times that of being in a randomly selected municipality. 
This result is consistent with most pathogen movement passing through 
urban centres (Fig. 3c and Supplementary Table 9).

The municipality in which a strain emerges also seemed important. 
After 1 year of sequential transmission, a new strain that first occurred 
in a rural municipality (population density of <50 people per km2) has 
travelled a median distance of 468.7 km (95% CI = 71.3–1,204.4 km), 
whereas in the same time window, a variant first occurring in an urban 
municipality (>500 people per km2) has travelled only 285.6 km (95% 
CI = 36.3–967.0 km). Furthermore, the variant that emerged in a rural 
municipality would have travelled to 1.53 times as many municipali-
ties as the urban variant (Extended Data Fig. 3a–c). This result is 
corroborated by previous research that demonstrated high levels 
of in and out migration among individuals in rural settings owing 
to travel for work or education33,34. On average, 1 year after emerg-
ing, transmission chains visited 4 (95% CI = 1–8) municipalities, and 
after 10 years they visited 20 (95% CI = 13–27) municipalities (Fig. 3d). 
Overall, these results show that the breadth of geographical spread 
is driven by a small number of long-range transmission events, with 
most transmissions remaining local. Incorporating our model into a 
branching epidemic, we found that after 10 years, transmission events 
are an average 465 km (95% CI = 456–472 km) from where they began 
(Supplementary Fig. 5A,B).

To test the performance of our model, we simulated transmission 
within and between districts using the Meta matrix adjusted by a known 
parameter that determines the probability of staying within one’s home 
district. We then fit our model using a subset of infections to re-estimate 
this parameter. Even when only a small minority of infections were 
sequenced, we recovered the true probability of staying within a dis-
trict. Our estimates were even robust to an extremely biased observa-
tion scenario whereby data from only two locations were available. 
Using this framework, we also explored the effect of misspecification 
of the generation time distribution. Using a 50% shorter generation 
time led to a small overestimate in the probability of staying in one’s 
home location each day (96.7% versus 95.3%), whereas using a 50% 
longer generation time had the opposite effect (Extended Data Fig. 5).

Vaccine-induced fitness changes
Implementation of PCV7 in 2009 and PCV13 in 2011 was associated with 
a substantial disruption in the patterns of circulating serotypes, results 
that are consistent with what has been previously observed8,20,35,36. How-
ever, the introduction of vaccines was also associated with a marked 
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change in fitness. By 2014, serotypes included in PCV13 represented 33.2% 
of all isolates in our dataset, a reduction from 85.0% in the pre-vaccine 
era (Fig. 4a). These patterns were consistent across the nine provinces 
in South Africa (Supplementary Fig. 6). To quantify changes in fitness 
linked to the vaccines, we fitted models to the annual distribution of 
serotypes across 184 GPSCs from the full dataset, allowing for differential 
fitness in serotypes included in PCV7 (serotypes 4, 6B, 9V, 14, 19F, 18C 
and 23F), PCV13 (which includes additional serotypes 1, 3, 5, 6A, 7F and 
19A), and those not included in the vaccine (NVT). This method tracks 
the proportion of all serotypes at the population level over time and 
quantifies the relative advantage of each of them following the imple-
mentation of vaccines. This simple formulation was able to recover the 
observed distribution of serotype proportions in each group, by year, 
across provinces (Fig. 4a–c and Supplementary Fig. 6). We note that the 
number of NVT and VT isolates we used in our model do not represent 
the underlying incidence of NVT and VT, as only a small proportion of 
all infections were detected and sequenced. However, as we focused on 
the relative abundance of NVT and VT strains per year, our approach is 
robust to changes in the absolute numbers of isolates sequenced.

Before the implementation of vaccines (2000–2008), NVTs had a 
relative fitness of 1.08 (95% CI = 1.06–1.09) compared with serotypes 
included in the vaccine (combining serotypes in PCV7 and PCV13 into 
VT). Following the implementation of PCV7 and PCV13, the fitness of 
the serotypes they target declined respectively compared with NVT 
serotypes (Fig. 4d and Supplementary Tables 10 and 11). When compar-
ing serotype fitness before and after the introduction of PCVs, VTs had 
a relative fitness of 0.86 (95% CI = 0.78–0.92) and 0.76 (95% CI = 0.67–
0.84) for PCV7 and PCV13 serotypes, respectively (Supplementary 
Table 11). Meanwhile, for the NVTs, vaccines were associated with a 1.25 
(95% CI = 1.14–1.35) times increase in relative fitness from 2009 to 2014 
compared with before the implementation of vaccines (Fig. 4e and Sup-
plementary Tables 10 and 11). When we directly compared the fitness 
advantage of NVTs compared with VTs in the PCV era, NVTs had a rela-
tive fitness advantage of 1.68 (95% CI = 1.59–1.77), which is equivalent 
to a 1.05 (95% CI = 1.05–1.06) growth advantage (relative to VTs) at each 
transmission generation. In a sensitivity analysis, the results remained 
consistent for carriage and disease isolates, respectively, despite them 
having been sampled from different cohorts (Extended Data Fig. 6 and 
Supplementary Fig. 7). We also found consistent results across prov-
inces (Supplementary Fig. 6). We additionally assessed whether there 
was a delay between vaccine implementation and resulting changes in 
strain fitness (Extended Data Fig. 7). The best fitting model assumed the 
change in fitness occurred in the same year as vaccine implementation.

Refining this model to look at the fitness of individual serotypes 
showed a wide range of fitness across serotypes. Our findings high-
light that all strains are fundamentally different in underlying fitness 
(Extended Data Fig. 8), which means that NVTs will differ in their ability 
to alter their ecological niche following changes in vaccine formulation. 
This result needs to be taken into consideration in the development 
of new vaccine formulations. Among NVTs, serotypes 15A, 35B and 8 
had the greatest fitness advantage after PCVs were used (Supplemen-
tary Figs. 8 and 9), a result concordant with what has been previously 
observed20,22,37. Shifts in lineage fitness also resulted in changing pat-
terns of spread. By incorporating our fitness estimates for NVT and VT 
strains after vaccination into our mobility model, we estimated that 
the number of affected municipalities from a strain of a NVT was 2.02 
(95% CI = 1.81–2.25) times the number of affected municipalities from 
types included in the vaccine (Fig. 3e).

We next explored whether using the proportion of isolates that were 
VT versus NVT within each GPSC at the start of the study period and our 
fitness estimates could explain the subsequent dynamics of individual 
GPSCs. Simply using VT and NVT fitness estimates could explain 60% 
of the variance in individual GPSC prevalence at any time. Allowing for 
serotype-specific differences produced a small improvement, explain-
ing 65% of the variance (Supplementary Fig. 10 and Supplementary 
Table 13). The unexplained variance reflects GPSC-specific fitness and is 
probably driven by negative-frequency dependent selection (NFDS)24. 
This result highlights the predictive nature of the serotype composition 
of GPSCs in determining PCV-driven GPSC dynamics (Supplementary 
Figs. 11 and 12).

The serotypes included in the vaccines were prevalent in childhood 
disease and had high levels of AMR in the USA, where the vaccines were 
developed38. The high levels of AMR in the VT strains was also present 
globally26. In South Africa, similar to other countries, reductions in AMR 
have been noted since vaccine implementation; however, it remains 
unclear whether this trend will persist or whether AMR eventually 
rebounds26. In South Africa, before vaccines, 63.6% of VT and 8.8% of 
NVT strains were resistant to penicillin. We found that there was a clear 
reduction in overall penicillin resistance following vaccine implemen-
tation, which was driven by reductions in the proportions of strains 
that are VT (Fig. 4f and Supplementary Table 12). The trends, although 
still present, were less clear in the other investigated antimicrobials 
(Extended Data Fig. 9). Owing to the relevance of penicillin as a first-line 
antimicrobial for pneumococcal disease and the high proportion of 
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Fig. 4 | Vaccine-induced fitness dynamics. a–c, Data (points) and model fit 
(lines) for the proportion of serotypes from NVTs (a), PCV7 types (b) and 
additional PCV13 types not included in PCV7 (c) from the years 2000 to 2014 in 
this study. The long dashed line indicates the time of PCV7 implementation 
(2009) and the short, dashed line indicates the time of PCV13 implementation 
(2011). d, Relative fitness for the three groups of serotypes compared with the 
NVT fitness estimates before and after PCVs were introduced. e, Relative 
fitness estimates for all three groups of serotypes comparing the before and 
after PCV eras. For a–e, before PCV refers to before 2009 for NVT serotypes, 
before 2009 for PCV7 type serotypes and before 2011 for PCV13 type serotypes. 
f, Proportion of penicillin resistance overall (black line), within NVT strains 
(maroon points) and within VT strains (turquoise points) with model fits.  
The dashed line indicates the time of PCV implementation (2009). g, Relative 
fitness of penicillin resistance among NVTs (pink) and VTs (blue) in before  
(left) and after (right) PCVs. Data in d, e and g are on a log scale. For a–f, plots  
are centred at the median and include error bars representing 95% credible 
intervals around the posterior parameter distributions (n = 6,798).
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resistance in this population, we used our same modelling framework 
and were able to recover the observed proportions of strains that were 
resistant to penicillin over time. Before vaccines, among both NVT and 
VT strains, there was limited difference in the fitness between those that 
were penicillin-resistant and penicillin-susceptible. However, follow-
ing implementation of vaccines, NVT-resistant strains were 1.30 (95% 
CI = 1.19–1.43) times as fit as penicillin-susceptible NVT strains (Fig. 4f,g 
and Supplementary Fig. 19). Conversely, resistance did not seem to have 
changed among VT penicillin-resistant strains (relative fitness of 0.97 
(95% CI = 0.91–1.03)) (Fig. 4f,g, Supplementary Fig. 13A–C and Supple-
mentary Table 12). Expansion of NVTs within typically VT-associated 
lineages is the most common mechanism for serotype replacement36. As 
a result, the penicillin resistance associated with these newly expanded 
NVT lineages is able to persist in the population19,36. Together with our 
quantification of growing penicillin resistance among NVTs follow-
ing the use of PCVs, this result suggests that the overall reduction in 
penicillin resistance seen following vaccine implementation may not 
persist. Our data also highlight the nuanced effect that vaccines can 
have on patterns of AMR (Supplementary Fig. 13D–F). It is probable that 
next-generation higher valency PCVs may also lead to increased AMR 
prevalence in those serotypes not included in the vaccine. Changing 
patterns of antimicrobial use in this population may also result in shifts 
in resistance patterns. The widespread presence of penicillin resist-
ance at the beginning of our data collection period would implicate 
expansion of resistance among existing lineages; however, we cannot 
exclude the emergence of some new resistance forms.

Limitations
We did not have complete carriage and invasive disease data across 
the entire time period. However, we performed sensitivity analyses 
to determine whether our results are robust to including carriage and 
invasive disease together. The human mobility data are Meta baseline 
data that were released by Meta owing to the SARS-CoV-2 pandemic in 
2020. We used aggregated data across 17 months ( January 2020 to June 
2021) within a single mobility pattern matrix. As mobility was altered 
during this period and to address the possibility that Meta mobility data 
are different to the movement of individuals involved in pneumococcal 
transmission, we included an additional parameter that adjusts the 
human mobility data to account for more or less time being spent in 
home municipalities. As we were able to obtain good fits to the observed 
spread of pneumococcus, and these models outperformed standard 
gravity models, our findings highlight how imperfect mobility data can 
nevertheless be useful. Vaccination levels for PCV7 were reported to 
be 89% by 2022 (ref. 39). We did not have the data to consider changes 
in coverage in time or across provinces. Other settings with differ-
ent levels of coverage may observe different fitness effects from the 
implementation of the vaccine. Within the fitness model, as we were 
looking at relative proportions of strains with increasing proportions 
of resistance, there may still be decreased total burden of resistant 
disease if those strains carrying it remain low in prevalence.

Conclusion
Here we quantified and explained the movement of a persistent human 
pathogen for which the geographical course has been largely hidden 
by its diversity and endemicity. The pneumococcus has an affinity for 
urban centres through which it channels its wider geographical spread. 
Although it is characterized by slow transmission overall, the use of vac-
cines can substantially and rapidly change pneumococcal lineage ecol-
ogy. Although vaccine-associated fitness dynamics have been previously 
described in the pneumococcus8,36, they have not been directly quanti-
fied. Increasing proportions of NVTs in the disease isolates from the PCV 
era can be largely attributed to the decrease in number of VTs rather than 
the increasing prevalence of NVTs22. Vaccination has had a secondary 

effect on penicillin resistance, with a decrease in recent years in South 
Africa. Given the estimated growth advantage of penicillin-resistant 
NVT strains, we may see a reversal of this benefit; however, estimating 
the carrying capacity of this growth is beyond the scope of this model. 
Furthermore, we quantified pneumococcal geographical spread and 
the spatial impact of NVT expansion after vaccination. Our findings 
highlight how directly observed characterizations of human mobility 
using mobile phone data or Meta data can be used to obtain a mecha-
nistic understanding of how pathogens spread within phylogeographic 
frameworks. This includes considering mobility of both infected indi-
viduals and the susceptible population and how we can adjust these 
datasets to account for systematic differences in behaviour between 
mobile phone data and Meta data and those involved in transmission. 
We note that basic gravity models also performed well, providing a 
useful alternative in settings in which mobile phone data options are 
not available. Our description of pneumococcal geographical spread 
provides new insight into the movement of emergent strains. In South 
Africa, the population density in the emergence location of a NVT strain 
may affect its speed of spread across the country and have implications 
for public health responses to emergent strains. Emergence in a highly 
mobile, peri-urban area may enable both rapid proximal geographical 
spread and less frequent distal seeding events, and thus more complete 
distribution across the country. The fitness model and human mobility 
model together provide frameworks to quantify and better understand 
the migratory and fitness dynamics of this globally endemic pathogen. 
The magnitude of South Africa and its provinces demonstrates that 
these frameworks may be applied to other large regions.
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Methods

Data sources and processing
Pneumococcal sequence data and metadata. The genomes included 
in this study were collected as part of the Global Pneumococcal Sequenc-
ing project (GPS), which is a global genomic survey of S. pneumoniae40. 
The invasive disease isolates included here were collected by the National 
Institute for Communicable Disease in South Africa from 2000 to 2014 
(ref. 22). In the initial phase of genome sequencing, approximately 300 
invasive-disease isolates from each year (2005–2014) were selected with a 
specific target age breakdown (50% from <3 year olds, 25% from 3–5 year 
olds, 25% from >5 year olds). In the second phase of sequencing, approxi-
mately 200 disease isolates from 2000 to 2004 and approximately 100 
invasive disease isolates from 2005 to 2010 from children <5 years old 
were randomly selected for sequencing22 (Supplementary Table 2). The 
carriage isolates were collected in Soweto, Gauteng (n = 736; collection 
years 2010, 2012 and 2013) and Agincourt, Mpumalanga (n = 1,114; collec-
tion years 2009, 2011 and 2013) by the Wits Vaccines and Infectious Dis-
eases Analytics Research Unit. A random sample of 400 carriage isolates 
from each year were chosen for genome sequencing (Supplementary 
Table 2). We included both carriage and invasive-disease isolates and 
conducted sensitivity analyses throughout to confirm the methods were 
robust to both carriage and invasive disease individually. Invasive disease 
is defined as the bacterium being isolated from a typically sterile site. The 
majority of total isolates were from children aged <5 years (75.0%); 7.6% 
were from individuals aged 5–20 years and only 17.5% were from adults 
(>20 years) (Supplementary Table 7). These were distributed across the 
before and after PCV periods. We additionally included similar GPSCs 
from the GPS database (for context within the global population) for 
the RR analysis. We utilized metadata that included collection year and 
month, residence province of the patient, age of the patient, sampling 
site and clinical manifestation. The range of sampling sites included 
nasopharyngeal swabs (for carriage), blood, pleural fluid, cerebrospinal 
fluid, peritoneal fluid, pus and other joint fluid (for invasive disease).

Population data. We estimated the population for each municipality 
(n = 234) across South Africa using the population-size estimates from 
LandScan 2017 (refs. 41,42) (Extended Data Fig. 11).

Mobility data. The mobility data used in this study were collected using 
Meta Data for Good Disaster maps from South Africa. These are initiated 
at the onset of a disaster—in this case, the SARS-CoV-2 pandemic—and 
track the geographical movement of Meta users43. We used the baseline 
(adjusting to 2 weeks before) human mobility for each month from 
January 2020 to July 2021 (refs. 43,44) to attain a mobility probability 
from and to each municipality. For each origin (home) municipality 
(n = 234), we determined the mean monthly number of Meta users 
that were in each destination municipality in South Africa. Location 
pairs with a value of zero were given a value of ten. We divided each 
cell by the total number of users across all destinations for that origin 
municipality. Each cell in the resultant original–destination matrix 
therefore represented the probability of being in each destination 
municipality given your home municipality. This is the probability of 
mobility from each municipality to each other municipality after 2019. 
Because we do not have mobility data from the exact years the genomes 
were sampled, we adjusted the diagonal of the mobility matrix using an 
estimated parameter. This allows people to stay more or less at home 
and mitigates the effect of non-year matched mobility data. We define 
the radius of gyration (Ri) for each municipality as follows:

∑R m d= (1)i i i i
2

Where di is distance to region i, and mi is the probability of mobility 
to region i. The sum is across all municipalities (n = 234)45 (Extended 
Data Fig. 11).

Generation time distribution. We used a simulation framework to 
estimate the overall generation time using the separate contributions 
of the carriage durations and the incubation period. This approach has 
previously been used for other pathogens46.

We sampled 1,000 carriage durations from an exponential distribu-
tion with means that are inverse to the clearance rates estimated across 
serotypes in ref. 31 (clearance rate = 0.026 (95% CI = 0.025–0.028) epi-
sode per day) and in ref. 32 (clearance rate = 0.032 (95% CI = 0.030–
0.034) episodes per day)32.

To sample the day of transmission, we randomly sampled a time point 
between zero and the time of clearance for each individual. We then 
separately sampled an incubation period using a uniform distribution 
of between 1 and 5 days. To account for longer carriages resulting in 
more opportunities for transmission, we sampled from the distribu-
tion of generation, with the probability of sampling each individual 
weighted by the total carriage duration. The total generation time is 
then the sum of the duration to transmission and the incubation period.

We repeated these steps 10,000 times and estimated the mean and 
standard deviation of this final distribution assuming that the genera-
tion time follows a gamma distribution with a mean of 35 and a standard 
deviation of 35 (exponential distribution with a rate of 1/0.096). By 
comparing the histogram of the distribution with the gamma distri-
bution, this seems a reasonable assumption (Supplementary Fig. 4).

Sample culture and genome sequencing. The pneumococcal isolates 
were selectively cultured on BD Trypticase soy agar II with 5% sheep 
blood (Beckton Dickinson) and incubated overnight at 37 °C in 5% CO2. 
Genomic DNA was then manually extracted using a modified QIAamp 
DNA Mini kit (Qiagen) protocol. As part of GPS, pneumococcal isolates 
were whole-genome sequenced on an Illumina HiSeq platform to pro-
duce paired-end reads with an average of 100–125 bp in length, and data 
were deposited into the European Nucleotide Database. Whole-genome 
sequence data were processed as previously described36,47.

AMR. We performed predictive antimicrobial susceptibility profil-
ing using the CDC-AMR pipeline for three classes of antimicrobi-
als: β-lactams (penicillin; encoded by the genes pbp1A, pbp2B and  
pbp2X)48,49; sulfonamides (co-trimoxazole; folA and folP); and mac-
rolides (erythromycin and clindamycin; ermB and mefA)50,51. This was 
done for 6,798 randomly selected isolates40.

Constructing time-resolved phylogenetic trees. We selected the 
GPSCs for which we had genomes from each of South Africa’s nine 
provinces and for which we had a minimum of 50 sequences in total 
to build phylogenies, henceforth referred to as ‘dominant GPSCs’. 
There were nine dominant GPSCs: GPSC1, GPSC2, GPSC5, GPSC10, 
GPSC13, GPSC14, GPSC17, GPSC68 and GPSC79 (n = 2.575). Assembly 
was performed using Wellcome Sanger Institute pathogen informat-
ics automated pipelines and is freely available for download from 
GitHub under an open-source licence, GNU GPL 3 (ref. 52). For each 
sample, sequence reads were used to create multiple assemblies using 
VelvetOptimiser (v.2.2.5) and Velvet (v.1.2.10)53. An assembly improve-
ment step was applied to the assembly with the best N50 and contigs 
scaffolded using SSPACE (v.2.0)54, and sequence gaps were filled using 
GapFiller (v.1.11)55. Assembly quality control parameters included a 
minimum average sequencing depth of 20× and an assembly length 
of 1.9–2.3 Mb. Sequences with more than 15% heterozygous SNP sites 
were excluded.

We created reference genomes for each GPSC using ABACAS (v.1.3.1) 
to order the contigs from a representative of each GPSC mapped 
to S. pneumoniae (strain ATCC 700669/Spain 23F-1) (EMBL acces-
sion: FM211187)56. Any contigs that did not align were concatenated 
to the end. We multiply mapped all genomes from each dominant 
GPSC against these references, respectively, using a custom map-
ping, variant calling and local realignment around indels pipeline 

https://www.ncbi.nlm.nih.gov/nuccore/FM211187
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(multiple_mappings_to_bam.py)57 using bwa-MEM (v.0.7.17)58 and 
samtools mpileup (v.1.6)59. The minimum base quality for a base to 
be considered was 50. The minimum mapping quality for a SNP to be 
called was 20, with a minimum of 8 reads matching the SNP. We built 
trees masking recombination regions using Gubbins (v.2.4.1)60 with 
the hybrid model that uses FastTree for the first iteration and RAxML 
subsequently61 and a GTR model. We converted branch length to time 
using BactDating (v.1.0) with a mixed gamma, relaxed clock model62. 
We compared concordance between BEAST (v.1.10.4)63 with both strict 
and relaxed clocks, and a Bayesian skyline prior. As the results were 
concordant, we used BactDating owing to its shorter runtime (Sup-
plementary Fig. 14).

RR framework
We used a RR framework to investigate the risk of genetic similarity 
across geographical distance64. We compared the location (loc) and 
label (G) (that is, GPSC or genetic similarity) of pairs of sequences that 
were collected around the same time (t). This approach has been shown 
to be robust to substantial biases in timing and location of isolate col-
lection64. We first constructed pair-wise matrices comparing every 
isolate to every other isolate (n pairs = 6,910). In the numerator was the 
ratio of pairs that were the same GPSC, collected within a year of each 
other, from the same province, over the total number of pairs collected 
within a year of each other from the same province. The denominator 
was the ratio of pairs that were the same GPSC, collected within a year 
of each other, from distant provinces (>1,000 km apart) (Lref), over the 
total number of pairs collected within a year of each other from distant 
provinces. Geographical distances were calculated based on the cen-
troid coordinates of each province. To demonstrate the suitability of 
using centroid distances, we simulated a spatial transmission process 
for 1,000 separate chains in which at each generation, a daughter point 
is placed at a randomly located location 350 m in each of the x and y 
direction. This was repeated over 20 generations. We then identified 
the centroid of each case based on the closest coordinate rounded to 
the nearest kilometre. We then calculated the total distance covered 
for both the true distance and the centroid distances and found that 
the resulting distances were similar (Supplementary Fig. 15).

To quantify uncertainty, we used a bootstrapping approach whereby 
in each bootstrap iteration, we randomly sampled with replacement 
the isolates before recalculating the statistic. We report the 2.5 and 
97.5 percentiles from the resulting distribution.

We also repeated the same analysis but used the time-resolved phy-
logenetic trees to interrogate pairs across increasing divergence times 
(breaking the GPSCs into higher resolution). For this, rather than matri-
ces designating whether pairs were the same GPSC or different GPSCs, 
the divergence time between each pair was included. We only included 
the divergence times between like GPSCs (Fig. 2c–e).
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We utilized the framework to compare a range of geographical dis-
tances, keeping the reference distance to pairs that were >1,000 km 
apart (Fig. 2).

To identify the divergence time at which pairs had an equal risk of 
being in the same province as distant provinces (time to homogeniza-
tion across South Africa), we investigated the divergence time at which 
there was no increased risk of similarity within a province compared 
against distant provinces (RR = 1). We stratified distances in South Africa 
into groups of distances, including the 9 within provinces, 14 pairs 
that were <500 km apart, 16 pairs 500–1,000 km apart and 6 pairs of 
provinces >1,000 km apart. We repeated the framework across rolling 
20-year time windows at 10-year intervals from 0 to 100 years (g1,g2) 

(Fig. 2f). We repeated this for pairs for which one was from South Africa 
and the other was from another country in Africa (Supplementary 
Fig. 3A). We sampled 300 sequences from each province with replace-
ment to compensate for biased sampling (Extended Data Fig. 2a). Fur-
thermore, to incorporate phylogenetic uncertainty into the statistical 
framework, we sampled 100 individual phylogenies from the BactDat-
ing posterior. We report the 2.5 and 97.5 percentiles from the resulting 
distribution. We also repeated the analyses only including pairs isolated 
from patients with pneumococcal disease (Extended Data Fig. 2b).

Probabilistic mobility model
Overall strategy. We extended a previously published mechanistic 
phylogeographic model65 to estimate the mobility of the pneumococ-
cus between pairs of municipalities at each transmission step. To infer 
the probable path of transmission between sequence pairs, we used 
the divergence time and the generation time distribution to estimate 
the number of transmission generations between pairs of sequences. 
Each generation is a possible transmission event and provides an  
opportunity for a mobility event.

The approach ultimately aims to estimate an origin destination 
matrix for a transmission step, whereby each cell represents the prob-
ability that the pneumococcus is now in location j after one transmis-
sion step given it was previously in location i. As the phylogenetic trees 
combined with the generation time provide an estimate of how many 
transmission steps separate pairs of samples, we can use repeated 
matrix multiplication to integrate over all possible pathways linking two 
locations (see below for more details). We incorporated the probability 
of sampling at each geographical location, within each collection year, 
by GPSC to account for our observation process.

Notation. We follow notation per a previous study65. A pair of isolates, 
Ca and Cb, with sequences, Seqa and Seqb included in a phylogeny are 
found in locations, La and Lb, and the samples were taken in the years, 
Ta and Tb. The inferred MRCA between Ca and Cb is time Tm and located 
in Lm. The number of transmission generation from the MRCA to Ca is 
Ga and to Cb is Gb.

Model fitting
Single transmission generation. Considering a single transmission 
generation, the probability that persons i and j come into contact with 
each other given i lives in location a and j lives in location b can be writ-
ten as follows:

∣

∣ ∣∑

i j L a L b

P V k L a P V k L b B

P(person and come into contact = , = )

= ( = = ) ⋅ ( = = ) ⋅
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Where P V k L a( = = )i i  is the probability that individual i, whose home 
location is in a, visits location k and P V k L b( = = )j j∣  is the probability 
that individual j whose home location is in b visits location k, and Bk is 
the location-specific probability of transmission for k.

At time τ, one infector in i in location a is expected to transmit to this 
number of persons in location b:

∑

E b τ L a

P V k L a P V k L b B S

(number of persons from infected at time = )

= ( = = ) ⋅ ( = = ) ⋅ ⋅
(4)

i

k

N

i i j j k b τ, ,gpsc

∣

∣ ∣

Where Sb τ, ,gpsc is the number of susceptible people in location b at 
time τ with some lineage = gpsc.

The total number of people infected by the infector is:
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Conditional on transmission occurring, the probability that the 
infectee’s isolate is taken in location b is:
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We then created an NXN transmission matrix,Δτ,gpsc,gen=1 , with N 
being the total number of locations, containing the transmission prob-
abilities, asymmetrically, between all pairs of locations at each point 
in time; δa b τ, , ,gpsc is element [a,b] of the matrix.

Human mobility characterization. We use Meta mobility data (Met-
Mob), as described in the mobility data section above, to charac-
terize mobility between the 234 municipalities of South Africa. We  
aggregated these to the province level (n = 9) to fit the model. Initially 
we extracted a 234 × 234 matrix that sets out the probability that an 
individual from municipality a visits location k; again, where k = any  
municipality.

MetMob comes from individuals using Meta; however, this may not 
be representative of the amount of time spent at home by those involved 
in pneumococcus transmission. The mean of the diagonal of the Meta 
Mobility matrix (234 × 234) is 0.989, implying, on average, 98.9% of 
Meta Users stay in their home municipality, Hi. To allow for individuals 
to spend more or less time at home than represented in the MetMob 
data, we incorporated a parameter to adjust the probability of being 
at home (θ). We adjusted the probability of staying home using a stand-
ard logistic function and restricted it with bounds of –0.04 and 0.6 to 
facilitate exploration of a sensible space. The adjustment allowed by 
the bounds limits the range of movement Hi–0.6 and Hi+0.04.

The probability of a person remaining in location a therefore 
becomes:
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Where a value of greater than 1.0 is obtained for a specific municipality, 
this is replaced by a value of 0.999.

The estimates thus far are mobility per day, but we were interested 
in mobility across the infectious period. Therefore, we adjusted 
the diagonal to account for mobility each day within the infectious  
period:

a a a aMetMob[ , ] = 1 − MetMob[ , ] (8)G

We rescaled the probabilities so that the sum of all mobility is  
equal to 1:

P V a H a k a a k P V a H a( = = , ≠ ) = MetMob[ , ]/(1 − ( = = )) (9)i i i i

Where MetMob[a,k] considers all mobility probabilities from the 
Meta Mobility data.

The sum of the movements to South African municipalities is equal 
to 1, which assumes that the analysis contains all possible movements 
of both the pneumococcus and people and implying no external intro-
ductions. The outcome of this is that some mobility may be missed, 
especially around the country borders.

Probability of the pneumococcus being in each location after G 
transmission generations. To determine the probability that location 
k contains the home location after G transmission generations, we used 
matrix multiplication, which integrates across all possible pathways 
connecting two locations.

∏Δ = Δ ⋅ Δ (10)τ T G
r

G

τ t r τ t= ,gpsc,gen=
=2

= ,gpsc,gen= −1 = ,gpsc,gen=1G r r−1

Where tr is the time of generation Gr.

Probability of observing a pair of cases in two specific locations. 
The probability that CA has home location LA and CB has home location 
LB is conditional on the sequences being observed in locations LA and 
LB at times TA and TB. We assumed that the location of two cases, Li and 
Lj, is dependent on the location of their MRCA, Lm, and the number 
of transmission generations separating them from their MRCA, GA  
and GB.

The observations processes across locations are independent of each 
other, and each transmission event is independent of other transmis-
sion events. The probability of observing (Obs) a case at Li at time TA 
is not dependent on the number of generations to, or location of, the 
MRCA. We considered discretized space of the nine provinces of South 
Africa, resulting in the following equation:
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Probability of G generations between MRCA and a sequenced  
isolate. Under the previous equation, ∣P G G T T( , Seq , Seq , , )A B A B A B  rep-
resents the generation time distribution.

We can extract the joint probability of CA and CB being separated from 
the MRCA by GA and GB transmission generations, respectively, using 
the above-derived generation time distribution and the time-resolved 
phylogenetic trees.

Assuming the generation time is gamma distributed and all trans-
mission events are independent, the sum of the gamma distribution is 
also gamma distributed. Additionally, we can extract the evolutionary 
times EA and EB, separating CA and CB from the MRCA. As previously 
described65, using equation (19), we can estimate the probability of g 
transmission events over many trees, allowing us to incorporate phy-
logenetic including evolutionary parameters from the tree structure.

We determined the probability for the number of generations from 
MRCA for each isolate for 1–1,000 generations, using the generation 
time derived above.

Location of the MRCA (P(Lm)). We estimated the probability that, on 
average, an MRCA is in each of the nine provinces in South Africa. We 
estimated parameters for each of the eight provinces, setting Western 
Cape aside as a reference, and dividing by the total across all nine to 
ensure that the sum of the probabilities is 1. This again assumes no 
external introductions.

Calculation of likelihood. We calculated the likelihood using all pairs 
of available sequenced S. pneumoniae as previously described65. We ac-
counted for the observation process by incorporating the probability of 
sampling in each location for isolates belonging to each GPSC annually.

Likelihood equation. We calculated the likelihood using all pairs of 
sequenced pneumococci as follows:

∏ ∏ ∏L P L L T T∝ ( , Obs , Obs , Seq , Seq , , ) (12)
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Where ngpsc are the number of sequences available from GPSC gpsc.
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Hamiltonian MCMC. We used an MCMC approach to estimate our 
parameters using the package fmcmc (v.0.5-1) implemented in R66. 
We estimated nine parameters: a parameter that adjusts the probabil-
ity of staying in the home municipality compared with Meta mobility 
data; and eight parameters capturing the relative probability that the 
MRCA of a pair of individuals was in each of the other eight provinces 
compared with the province of Western Cape (the reference).

We only used pairs of sequences that were separated by less than 
10 years of evolutionary time between them. After 10 years, there 
are limited spatial signals remaining, as the bacterium has had many 
opportunities to move. This approach was used to make the model 
computationally tractable. To incorporate phylogenetic uncertainty, 
we repeatedly refit the model using 50 randomly selected phylogenies 
from the BactDating posterior. We report the 2.5 and 97.5 percentiles 
from the resulting distribution. In a sensitivity analysis, we showed that 
increasing the model to 15 years resulted in similar estimates (Extended 
Data Fig. 12a).

Model performance
To assess the performance of our model, we used a simulation frame-
work. We simulated 50,000 pairs of events, locations and the location of 
the MRCA between pairs, whereby the probability of mobility between 
each pair of locations was determined by the Meta mobility matrix 
adjusted by a parameter of known value of −2. We tested our ability to 
recapture this input parameter. To incorporate the biased observation 
process, we downsampled the simulated data based on the by-province 
sampling probabilities from our true data.

We used the downsampled data to fit our model with 20,000 steps 
of a MCMC with a jump step of 0.08 in 3 chains. We were able to recap-
ture the downsampled data utilizing the human mobility framework 
and the estimated parameter for the probability of staying at home, 
accounting for the sampling probability per province. We then utilized 
the same human mobility framework and the estimated parameter, 
excluding the sampling probability, and were able to recapture the 
complete simulated data, including the input parameter (Extended 
Data Fig. 5a,b).

We repeated these simulations but downsampled with various biases. 
We determined how well the model performed when we only sampled 
two provinces. We also tested how far off our estimates would be if 
our generation time estimate was 50% higher or 50% lower than we 
had estimated given the Kenyan and Gambian data31,32 (Extended Data  
Fig. 5c,d).

Model sensitivity analyses. We estimated our parameters only to 
include isolates from patients with invasive pneumococcal disease 
(Supplementary Fig. 1B).

To test the impact of a range of generation times on the parameter 
estimates, we also re-ran our MCMC with generation times of 15, 35 
(as included in the model) and 55 days. To quantify uncertainty, we 
sampled posterior parameters, reporting the 2.5 and 97% percentiles 
(Extended Data Fig. 12b).

We confirmed that the chains converged for each of the nine para
meters estimated (Supplementary Fig. 16).

Probability guided transmission simulations
Person-to-person transmission chains. We simulated person-to- 
person transmission chains seeded in a starting municipality weighted 
by the population size. We determined the RR of being in a specific 
municipality after 10 transmission generations (approximately 1 year) 
across 500,000 simulations.

We fixed the starting municipality to be rural (population density 
<50 km–2) or urban (population density >500 km–2) and repeated the 
above simulation. For 10,000 sequential simulations, we counted 
the number of unique municipalities affected and distance travelled 
at each transmission interval weighting by population size. We then 

determined the number of municipalities travelled to across all trans-
mission chains (Extended Data Fig. 3).

Branching epidemic. We simulated a branching epidemic in which we 
drew the number of transmission events seeded by each event from a 
Poisson distribution around an effective reproductive number (Reff) of 
1 and amplitude of 0.15 over 100 iterations. We determined the mean 
distance from the starting municipality after 60 generations (5.8 years 
with a 35-day generation time) and the number of municipalities visited 
over that time. We calculated the uncertainty at the 95% CI of a normal 
distribution.

Gravity model. We compared the performance of the model that used 
Meta data with the performance of a simple gravity model whereby 
the probability of mobility is determined by the distance and human 
population size of the municipalities. We calculated the probability of 
mobility between locations i and j (GravMobi,j) to be the log of the des-
tination population size (popsizej) raised to parameter β divided by the 
distance between locations, loci and locj (disti,j) raised to parameter γ.

GravMob =
log(popsize )

dist
(13)i j

j
β

i j
γ,

,

We also tested a model including only distance and estimating an 
exponent adjustment parameter γ.

We calculated the DIC comparing the three models and found that 
the Meta mobility model (DIC = 12,290.97) was the best-performing 
model67 when compared with the gravity model (DIC = 12,294.34). Both 
of these models performed better than distance alone (DIC = 12,424.32) 
(Extended Data Fig. 4).

All statistical analysis for the RR framework and the mobility model 
was performed in R (v.3.6.2)68.

Population-level fitness model
Overall strategy. We developed logistic growth models to fit the chang-
ing prevalence of different serotypes and assess the impact of vaccine 
implementation, utilizing a method that has previously been imple-
mented for the endemic bacterium Bordetella pertussis69.

Vaccine-type model. We first binned serotypes into three groups: 
those not included in the vaccine (NVTs), serotypes included in PCV7 
(4, 6B, 9V, 14, 18C, 19F and 23F), and additional serotypes included in 
PCV13 (1, 3, 5, 6A, 7F and 19A). We used the full data for this analysis. 
We computed the relative abundance fi,ref of each group of serotypes, 
i, compared with a reference type, ref.

f t
N t

N t N t
( ) =

( )
( ) + ( )

(14)i
i

i
,ref

ref

We chose to use NVTs as the reference. Varying the reference did not 
affect the model, as long as the reference samples span all years. We 
then used a simple logistic model, assuming a constant growth rate to 
capture the evolution of this abundance, at each time t.

( )
f t

r t
( ) =

1

1 + exp(− ⋅ )
(15)i f

f i

,ref 1 −
,ref

i

i

,ref,0

,ref,0

where ri,ref is the growth rate of that abundance shared across all prov-
inces, and fi,ref,0 is the initial relative abundance of the serotype group 
i with respect to a chosen ref.

To control for the varying presence of all circulating serotypes 
through time, we present fitness as the average relative growth rate, 
ri, for each group with respect to a randomly selected group in the 
population:



∑r f r r= ( − ) (16)i
j i

n

j i j
≠

,ref ,ref

where n is the number of groups, and fj
 is the average absolute fre-

quency of the group in the period of time considered.
This average relative growth rate, ri, can be identified as the selection 

rate coefficient of the group in the population considered69. The selec-
tion rate coefficient is a direct measure of the fitness advantage of 
emerging variants and is one of the best indicators as to whether a 
strain will increase in frequency during an outbreak70,71.

We can further multiply the selection rate by the mean generation 
time (35 days) to obtain the selection coefficient per generation, which 
is the relative fitness advantage per transmission generation.

In the Article, we also present estimates of the relative fitness advan-
tage of groups in particular time frames. We used the same computation 
as for the average relative growth rate, but tailored it to specific refer-
ences. For example, to compute the relative fitness advantage of NVTs 
compared with VTs in the PCV era rΔ NVT,VT,after PCV, we computed:

∑ (17)r
f f

f r rΔ =
1
+

( − )
iϵ

i iNVT,VT,after PCV
PCV7 PCV13 (PCV7,PCV13)

NVT,after PCV ,after PCV

To fit the model, we used Hamiltonian Monte Carlo as implemented 
in R-Stan72, with stan (v.2.26.1). We used a Poisson likelihood to fit the 
observed proportion of sequences that were of each category and the 
total number of isolates in that year as an offset. The model estimated 
the proportion of isolates that were of each type at the start of the 
dataset and the fitness parameters.

Exploration of vaccine effect. To investigate whether the serotypes 
fitness changed across after implementation of PCV7 and PCV13, we 
tested a range of models. We considered a model without any shift of 
fitness, a model with a single shift in 2009 and a model with two growth 
rates represented by a shift in fitness in both 2009 and 2011. The 2009 
shift pertains only to those serotypes included in PCV7 and the 2011 
shift pertains to those additional 6 serotypes in PCV13. Model com-
parison was done using the Watanabe–Akaike information criterion 
(WAIC) implemented in the loo package73. Furthermore, we tested for 
a potential delay between implementation of PCVs and the change in 
fitness. Model comparison is presented in Extended Data Fig. 7.

The model performed best with an initial fitness switch in 2009 (the 
initial year of vaccine implementation) and another fitness switch in 
2011 (the year of PCV13 implementation). We used this model in the 
main text.

Estimation of individual serotype fitness. Using the same framework, 
we also estimated the growth rate per serotype to capture whether the 
individual dynamics were concordant with, or deviated from, what was 
expected according to their respective group (NVT, PCV7 or PCV13) 
(Fig. 4a–c). The reference strain in this analysis was set to serotype 13, 
which is a NVT and for which samples span all years.

Exploration of predicted GPSC dynamics based on their serotype 
composition. We explored whether using the proportion of isolates 
that were VT versus NVT within each GPSC at the start of the study  
period and our fitness estimates could explain the subsequent dynam-
ics of individual GPSCs.

To predict the dynamics of individual GPSCs based on their sero-
type composition, we used the same framework as described above, 
applied to each GPSC serotype group in our dataset. As the number 
of such groups is large (n = 340 GPSC serotype groups), we restricted 
the analysis to the GPSCs present at a minimum prevalence of 1%. This 
led to 26 GPSCs being considered for this analysis (representing 74.7% 
of the dataset), split in a total of 101 GPSC serotype groups. We then 
modelled the dynamics of each GPSC serotype group, estimating one 

starting frequency per group and using the previously estimated fitness 
parameters, either by VT or serotype. We also considered a model with 
no fitness parameters (relative fitness = 1). To assess the model perfor-
mances, we computed the Akaike information criterion (AIC)74 using 
the average likelihood of each model and the number of parameters 
used in each model. We also computed the predicted GPSC dynamics 
over time for each model by summing all the predicted GPSC serotype 
group dynamics for each GPSC. As a measure of goodness of fit we used 
the coefficient of determination of the observed versus predicted GPSC 
proportions each year:

(18)R = 1 −
∑ (observed proportion − predicted proportion)

∑ (observed proportion − mean observed proportion)
i

i

2
2

2

R2 is also the proportion of variation explained by the variables con-
sidered in each model.

Our model estimated a constant fitness for each group considered 
(VTs or individual serotypes), assuming that if a group has the highest 
fitness, it will eventually replace the other groups. This assumption is 
meaningful for VTs and serotypes, as some are directly targeted by 
the vaccines, a strong selective force in the population. However, the 
fitness of each GPSC cannot be modelled with this simple assumption 
as it has been shown that their fitness is inherently multifactorial, as 
described in the NFDS model24.

AMR. We then used the model to capture the decreasing proportion 
of penicillin resistance in the population. To do this, we incorporated 
the dynamics of VTs (PCV7 and PCV13) and NVTs in the population 
and the respective proportion of penicillin resistance within them. 
To keep the model tractable, we did not differentiate here between 
serotypes included in PCV7 or PCV13, instead we group them into 
VTs. We use the PCV7 implementation (2009) as the year of fitness 
shift. This parametrization marginally differed from the best model 
(next best) (Extended Data Fig. 7) and enabled us to keep the number 
of categories tractable. We also compared the single switch model to 
a model with no change in fitness at the time of vaccine implementa-
tion. This approach showed that the model with a switch was superior 
(Supplementary Fig. 17).

We used the same approach described above to model the proportion 
of VTs, fVT, and NVTs, fNVT. We then modelled the proportion of strains 
that were and were not penicillin resistant within each group, either 
VT, fAMR|VT or NVT, fAMR|NVT. We estimated the fitness of resistance in each.

We then fit the model to all four groups, fVX,AMR (resistant NVT, sus-
ceptible NVT, resistant VT and susceptible VT).

∣
f t f t f t( ) = ( ) ⋅ ( ) (19)VX,AMR VX AMR VX

Where fVX is the proportion of either VT or NVT in the population and 
fAMR|VX is the proportion of penicillin resistance within each of those 
groups. We then derived the proportion of penicillin resistance overall 
in the population by summing the proportion of VT resistant, fVT,AMR, 
and NVT resistant, fNVT,AMR, strains.

Estimating effect of fitness on migration. We included the calculated 
average relative growth rates in the simulated branching epidemic to 
calculate the mean number of municipalities visited, distance trav-
elled and probability of being in the home municipality over 5 years. 
We report uncertainty at one standard deviation from the mean. We 
repeated this incorporating the post-PCV selection coefficients for 
NVTs and VTs and estimated the relative increase in the number of 
municipalities visited for NVT serotypes compared with PCV serotypes 
after 2 years of transmission.

Fitness model carrying capacity sensitivity. Our fitness model  
assumed constant fitness over time. This specifically means that if a 
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serotype is found to be fitter than the rest of the population, we expect 
it to replace the whole population after some time. However, the cur-
rently best-supported model proposes that NFDS drives pneumococ-
cus population dynamics24, whereby lower frequency genes become  
more fit.

To test the effect of our assumption on our fitness estimates, we per-
formed a sensitivity analysis. We introduced minimum and maximum 
carrying capacities in our logistic model. In equation (20), we let the 
relative frequency fi,ref go to a maximum of Kmax and in equation (21),  
a minimum of Kmin:

( )
f t

K

r t
r( ) =

1 + exp(− ⋅ )
, if > 0 (20)i K f
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i,ref
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−
,ref

,ref
i

i
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with K K≤min max, and K K∈ [0, 1], ∈ [0, 1]min max .
We considered a range of values for Kmin (0.1, 0.05 and 0) and Kmax (0.9, 

0.95 and 1) (Supplementary Fig. 20). We tested the effect of this carrying 
capacity has on both the vaccine status model (Supplementary Fig. 18) 
and the AMR and vaccine status model (Supplementary Fig. 19). In each 
case, we compared the fitness estimates obtained. We found that the 
fitness estimates were robust to variable carrying capacities across 
those tested, which implied that our assumption does not affect this 
framework. However, it is important to note that this model is robust 
to set variable carrying capacities while being unable to estimate them, 
which is in contrast to NFDS. Our model assumes that there is a popu-
lation replacement up to the carrying capacity and does not allow for 
fine-scale estimates of an equilibrium. This fitness model can be used 
as a quantitative descriptor of the growth of distinct groups (that is, 
penicillin resistance or VT serotypes in the context of a perturbation) 
but cannot describe the complex underlying fitness effects of changing 
frequencies of genes under NFDS24.

All statistical analysis for the fitness model was performed in R 
(v.4.0.5)68.
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Extended Data Fig. 1 | Time Resolved Trees for Dominant GPSCs. Trees are 
recombination masked, aligned to a reference for each GPSC. Time resolution 
was performed using BactDating. The dates are along the x-axis. (a) GPSC79, 

N = 102 (b) GPSC68, N = 97 (c) GPSC17, N = 531 (d) GPSC14, N = 521 (e) GPSC13, 
N = 611 (f) GPSC10, N = 718 (g) GPSC5, N = 841 (h) GPSC2, N = 1430 (i) GPSC1, 
N = 1943.



Extended Data Fig. 2 | Risk ratio framework sensitivity analyses to 
determine geographic structure when sub-sampling and only including 
disease isolates. Risk ratio of being the same GPSC within a province (blue), 
between different provinces over increasing distance (red), compared to 
geographically distant pairs (>1000 km) (reference) (top) and the risk ratio of 
having a tMRCA 0–5, 5–10, 10–20, or 20–200 years ago within South African 
provinces (blue), across larger distances within South Africa (red), from South 

Africa to other countries in Africa (green), and from South Africa to countries 
outside of Africa (purple) (South Africa; N = 6910). (a) Including all isolates from 
each province (left) compared with sub-sampling to 300 with replacement to 
compensate for biased sampling in each province. (b) Including only isolates 
sampled from patients with pneumococcal disease. All plots use a reference  
of pairs which are from distant provinces in South Africa (open triangle).  
Error bars represent 2.5 to 97.5 CIs.
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Extended Data Fig. 3 | Relative risk of a pneumococcal strain being in each of municipality after 1 year of transmission. Sequential transmission chains 
starting in municipalities with (a) <50 people/km2, (b) 50–500 people/km2, or (c) >500 people/km2 across 100,000 samples.



Extended Data Fig. 4 | Estimated mobility and proportion of infections.  
(a) a gravity model with two parameters adjusting the destination population 
size (beta) and the distance between locations (gamma) (pink), (b) a distance 
model whereby the probability of mobility is a function of the distance between 

locations adjusted with parameter gamma, (c) is the Meta mobility data between 
locations with a parameter adjusting the probability of staying in the home 
location (main model) across distances. (d-f) are the estimated proportion of 
infections by each of these models compared to the population size.



Article

Extended Data Fig. 5 | Replicated simulations for model performance 
testing. Testing model performance using replicated simulations.  
(a) Simulated the total epidemic (black dots), biased down-sampled data as per 
true proportion per province (red dots) (“Biased Down-sample” in c and d), 
model fit to down-sampled data (red line), removing the sampling probability 
the model recapturing the true epidemic (black dot) (b) Population size (x-axis) 
compared to the proportion of infections from the down-sampled data (black) 
compared to the truth from the overall simulated epidemic (purple). (c) The 

probability of being in the home municipality and (d) the recaptured parameter 
after inputting a parameter of −2 to adjust the diagonal of the mobility matrix 
after one transmission generation. Both c and d include values from left to right 
for sampling as per the true data proportions in each province (6.5% of total 
infections), down-sampling to fit on only 2 of the 9 provinces, and if our 
generation time estimate is 50% smaller than the truth, exactly right, or 50% 
larger. Error bars represent 2.5 to 97.5 percentiles.



Extended Data Fig. 6 | Comparison of fitness model results with full data or 
disease only data. (a-b) Results with the full data. (c-d) Results with the disease- 
only data. a and c present the model fits for the proportion of serotypes from 
non-vaccine type (NVT), PCV7 types, and additional PCV13 types not included 
in PCV7 from the years 2000 to 2014 in this study. Points represent data and line 

represent the model fit. b and d present the relative fitness estimates for all 
three groups of serotypes in each era. Pre-vaccine era is prior to 2009 for NVTs, 
prior to 2009 for PCV7 and prior to 2011 for PCV13. Post-vaccine era is post-2009 
for NVTs, post-2009 for PCV7 and post-2011 for PCV13. Error bars represent  
2.5 and 97.5 percentiles.
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Extended Data Fig. 7 | Fitness growth model testing year of switch and 
schematic. (a) Testing year of fitness switch for the logistic growth -fitness 
model. Adjusting the year of the fitness switch in the model fitting to vaccine 
status. The difference to the best WAIC (2009 [PCV7 implementation] & 2011 
[PCV13 implementation]) is on the y-axis where the year of fitness switch relative 
to 2009 & 2011 is on the x-axis. Further we test no fitness switch (ns; yellow) and 
the impact of including one fitness switch in 2009 (purple). The dark gray box 
highlights equivalent models (ΔWAIC ≤2) and light gray box highlights similar 
models (ΔWAIC ≤ 7). (b) Schematic denoting the fitness growth model 
parameterisation which accounts for the specific timing of the PCV impacting 
each group of serotypes (NVT in blue; PCV7 in green; PCV13 in red).



Extended Data Fig. 8 | Serotype fitness estimates. Fitness estimates pre- and 
post-PCV (y-axis) for each serotype (grey), superimposed by group including 
NVT (blue), PCV7 (green), and PCV13 (red). Pre-vaccine and post-vaccine refer 
to pre- and post- 2009 and 2011 for PCV7 and PCV13 respectively. Individual 
serotype fitness estimates can be found in Fig. S9.
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Extended Data Fig. 9 | Antimicrobial resistance summary. The proportional 
trends in antimicrobial resistance overall (black) and within Vaccine type [VT] 
(in blue) and Non-Vaccine Type [NVT] (in red) serotypes for in-silico predicted 
(a) penicillin (b) erythromycin (c) co-trimoxazole and (d) clindamycin.



Extended Data Fig. 10 | Data fits for model accounting for proportions  
and fitness over time in four groups. (a) NVT-penicillin resistant (red),  
(b) NVT-penicillin susceptible (green), (c) VT-penicillin resistant (yellow) and 
(d) VT-penicillin susceptible (blue). The dashed lines indicate the year of PCV7 

implementation and fitness switch model implemented. (e) Fitness estimates 
pre-PCV and post-PCV for each group and colored accordingly. e is on a log 
scale. This model uses a shift in fitness in 2009. Error bars represent 2.5 to 97.5 
percentiles.
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Extended Data Fig. 11 | Data descriptions across the 234 municipalities  
of South Africa. (a) Population density as estimated given the area of each 
municipality and the populations estimated by LandScan and (b) the radius of 
gyration for each municipality given the distance between each municipality at 
the centroid weighted by the human mobility data from Meta Data for Good.



Extended Data Fig. 12 | Parameter adjustment sensitivity analysis.  
(a) Fitting the mobility model to 15 years of evolutionary distance. Fitting the 
probabilistic mobility model to pairs of genomes which are 15 years divergent 
from their MRCA (black), compared against the 10 years used in the main model 

(red), and the data (blue). (b) Assessing the mean geographic distance per 
evolutionary time in years for the data (blue), including the sampling probability 
(red) for, (left) generation time of 15 days, (middle) generation time of 35 days, 
and (right) generation time of 55 days.



 
 
 
 

 
Corresponding author(s):  Sophie Belman 

Last updated by author(s): 16/05/2024; May 16, 2024 
 

 
 Reporting Summary  
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist. 

Please do not complete any field with "not applicable" or n/a. Refer to the help text for what text to use if an item is not relevant to your study. 
For final submission: please carefully check your responses for accuracy; you will not be able to make changes later. 

 
 Statistics  
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section. 

n/a 
 

 
 

 
 

 
 

 
 

Confirmed 

 The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement 

 A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly 

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section. 

 A description of all covariates tested 

 A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons 

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals) 

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable. 

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings 

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes 

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated 

Our web collection on statistics for biologists contains articles on many of the points above. 

 Software and code  
Policy information about availability of computer code 

Data collection 

 
Data analysis 

 
 

 
For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information. 

1 

Population size estimates were collected from LandScan Global 2017 provided by the Oak Ridge National Laboratory (https:// 
landscan.ornl.gov/). Human mobility data was provided by Meta Data for Good, and is available on the Data for Good portals by access 
request (https://dataforgood.facebook.com/dfg/about). 

Computational analysis was conducted in R version 3.6.2 and version 4.0.5 as specified in the GitHub README Bioinformatic analysis was 
conducted using tools described in the methods section including stan version 2.26.1, VelvetOptimiser v2.2.5, Velvet v1.2.10, SSPACE v2.0, 
GapFiller v1.11, ABACAS v1.3.1, bwa-MEM v0.7.17, samtools mpileup v1.6, Gubbins v2.4.1 , BactDating v1.0, and BEAST v1.10.4. The MCMC 
was conducted using fMCMC v0.5-1. All bespoke code is available on GitHub at https://github.com/sophbel/geomig_evo_pneumo 

nature portfolio | reporting sum
m

ary 
April 2023 



All data are available in the main text or the supplementary materials. All data and code for figures and analysis are accessible at GitHub (https://github.com/ 
sophbel/geomig_evo_pneumo). All whole genome sequences were deposited in the European Nucleotide Database and accession numbers are available in the 
GitHub repository and on FigShare (doi: 10.6084/m9.figshare.24219214). Associated metadata is available in the Microreact webserver at the following URL: 
https://microreact.org/project/7wqgd2gbBBEeBLLPKonbaT-belman2024southafricapneumococcus . All scripts for analysis are available on GitHub at: https:// 
github.com/sophbel/geomig_evo_pneumo 

 
Data 

 

Policy information about availability of data 
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

 
Research involving human participants, their data, or biological material 

 

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism. 

Reporting on sex and gender 

Reporting on race, ethnicity, or 
other socially relevant 
groupings 

Population characteristics 

Recruitment 

Ethics oversight 

Note that full information on the approval of the study protocol must also be provided in the manuscript. 

 

Field-specific reporting 
 

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection. 

 Life sciences  Behavioural & social sciences  Ecological, evolutionary & environmental sciences 

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf 
 

Life sciences study design 
 

All studies must disclose on these points even when the disclosure is negative. 

Sample size 

Data exclusions 

Replication 

Randomization 

Blinding 

Reporting for specific materials, systems and methods 
 

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

2 

N/A 

N/A 

N/A 

N/A 

N/A 

The sample sizes encompass the number of genomes sequenced as part of the Global Pneumococcal Sequencing Project. 

N/A - No data were excluded 

Co-authors and reviewers reviewed the code and verified the reproducibility of the results. 

N/A - the analysis does not involve experimental groups. 

N/A - the analysis does not involve experimental groups. 

nature portfolio | reporting sum
m

ary 
April 2023 



n/a Involved in the study 

Antibodies 

Eukaryotic cell lines 

Palaeontology and archaeology 

Animals and other organisms 

Clinical data 

Dual use research of concern 

Plants 

n/a  Involved in the study 
ChIP-seq 

Flow cytometry 

MRI-based neuroimaging 

 
Materials & experimental systems Methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This checklist template is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in 
the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ 

3 

nature portfolio | reporting sum
m

ary 
April 2023 

http://creativecommons.org/licenses/by/4.0/

	Geographical migration and fitness dynamics of Streptococcus pneumoniae

	Quantifying spatial structure

	Inferring migration using human mobility

	Vaccine-induced fitness changes

	Limitations

	Conclusion

	Online content

	Fig. 1 Descriptive summary of S.
	Fig. 2 RR framework to determine geographical structure.
	Fig. 3 Mechanisms of geographical migration.
	Fig. 4 Vaccine-induced fitness dynamics.
	Extended Data Fig. 1 Time Resolved Trees for Dominant GPSCs.
	Extended Data Fig. 2 Risk ratio framework sensitivity analyses to determine geographic structure when sub-sampling and only including disease isolates.
	Extended Data Fig. 3 Relative risk of a pneumococcal strain being in each of municipality after 1 year of transmission.
	Extended Data Fig. 4 Estimated mobility and proportion of infections.
	Extended Data Fig. 5 Replicated simulations for model performance testing.
	Extended Data Fig. 6 Comparison of fitness model results with full data or disease only data.
	Extended Data Fig. 7 Fitness growth model testing year of switch and schematic.
	Extended Data Fig. 8 Serotype fitness estimates.
	Extended Data Fig. 9 Antimicrobial resistance summary.
	Extended Data Fig. 10 Data fits for model accounting for proportions and fitness over time in four groups.
	Extended Data Fig. 11 Data descriptions across the 234 municipalities of South Africa.
	Extended Data Fig. 12 Parameter adjustment sensitivity analysis.

	SpringerNature_Nature_7626_ESM2.pdf
	Statistics
	Software and code
	Data
	Research involving human participants, their data, or biological material
	Field-specific reporting
	Life sciences study design
	Reporting for specific materials, systems and methods
	Materials & experimental systems Methods





