508 research outputs found

    Evolution of Cosmological Perturbations in the Long Wavelength Limit

    Get PDF
    The relation between the long wavelength limit of solutions to the cosmological perturbation equations and the perturbations of solutions to the exactly homogeneous background equations is investigated for scalar perturbations on spatially flat cosmological models. It is shown that a homogeneous perturbation coincides with the long wavelength limit of some inhomogeneous perturbation only when the former satisfies an additional condition corresponding to the momentum constraint if the matter consists only of scalar fields. In contrast, no such constraint appears if the fundamental variables describing the matter contain a vector field as in the case of a fluid. Further, as a byproduct of this general analysis, it is shown that there exist two universal exact solutions to the perturbation equations in the long wavelength limit, which are expressed only in terms of the background quantities. They represent adiabatic growing and decaying modes, and correspond to the well-known exact solutions for perfect fluid systems and scalar field systems.Comment: 16 pages, no figure, submitted to PR

    Evolution of Cosmological Perturbations in the Universe dominated by Multiple Scalar Fields

    Full text link
    By efforts of several authors, it is recently established that the dynamical behavior of the cosmological perturbation on superhorizon scales is well approximated in terms of that in the long wavelength limit, and the latter can be constructed from the evolution of corresponding exactly homogeneous universe. Using these facts, we investigate the evolution of the cosmological perturbation on superhorizon scales in the universe dominated by oscillating multiple scalar fields which are generally interacting with each other, and the ratio of whose masses is incommensurable. Since the scalar fields oscillate rapidly around the local minimum of the potential, we use the action angle variables. We found that this problem can be formulated as the canonical perturbation theory in which the perturbed part appearing as the result of the expansion of the universe and the interaction of the scalar fields is bounded by the negative power ot time. We show that by constructing the canonical transformations properly, the transformed hamiltonian becomes simple enough to be solved. As the result of the invetigation using the long wavelength limit and the canonical perturbation theory, under the sufficiently general conditions, we prove that for the adiabatic growing mode the Bardeen parameter stays constant and that for all the other modes the Bardeen parameter decays. From the viewpoint of the ergodic theory, it is discussed that as for the Bardeen parameter, the sigularities appear probabilistically. This analysis serves the understanding of the evolution of the cosmological perturbations on superhorizon scales during reheating.Comment: 31 Pages; Latex, No figure

    Cosmological Perturbations with Multiple Fluids and Fields

    Get PDF
    We consider the evolution of perturbed cosmological spacetime with multiple fluids and fields in Einstein gravity. Equations are presented in gauge-ready forms, and are presented in various forms using the curvature (\Phi or \phi_\chi) and isocurvature (S_{(ij)} or \delta \phi_{(ij)}) perturbation variables in the general background with K and \Lambda. We clarify the conditions for conserved curvature and isocurvature perturbations in the large-scale limit. Evolutions of curvature perturbations in many different gauge conditions are analysed extensively. In the multi-field system we present a general solution to the linear order in slow-roll parameters.Comment: 19 pages, 6 figures, revised thoroughly; published version in Class. Quant. Gra

    Evolution of Second-Order Cosmological Perturbations and Non-Gaussianity

    Get PDF
    We present a second-order gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We apply such a general formalism to describe the evolution of the second-order curvature perturbations in the standard one-single field inflation, in the curvaton and in the inhomogeneous reheating scenarios for the generation of the cosmological perturbations. Moreover, we provide the exact expression for the second-order temperature anisotropies on large scales, including second-order gravitational effects and extend the well-known formula for the Sachs-Wolfe effect at linear order. Our findings clarify what is the exact non-linearity parameter f_NL entering in the determination of higher-order statistics such as the bispectrum of Cosmic Microwave Background temperature anisotropies. Finally, we compute the level of non-Gaussianity in each scenario for the creation of cosmological perturbations.Comment: 14 pages, LaTeX file. Further comments adde

    Quantized gravitational waves in the Milne universe

    Get PDF
    The quantization of gravitational waves in the Milne universe is discussed. The relation between positive frequency functions of the gravitational waves in the Milne universe and those in the Minkowski universe is clarified. Implications to the one-bubble open inflation scenario are also discussed.Comment: 26 pages, 1 figure, revtex. submitted to Phys. Rev. D1

    Metric perturbations at reheating: the use of spherical symmetry

    Get PDF
    We consider decay of the inflaton with a quartic potential coupled to other fields, including gravity, but restricted to spherical symmetry. We describe analytically an early, quasilinear regime, during which inflaton fluctuations and the metric functions are driven by nonlinear effects of the decay products. We present a detailed study of the leading nonlinear effects in this regime. Results of the quasilinear approximation, in its domain of applicability, are found to be consistent with those of fully nonlinear lattice studies. We discuss how these results may be promoted to the full three dimensions.Comment: 18 pages, revtex, 2 figure

    Self Excitation of the Tunneling Scalar Field in False Vacuum Decay

    Get PDF
    A method to determine the quantum state of a scalar field after O(4)O(4)-symmetric bubble nucleation has been developed recently. The method has an advantage that it concisely gives us a clear picture of the resultant quantum state. In particular, one may interpret the excitations as a particle creation phenomenon just as in the case of particle creation in curved spacetime. As an application, we investigate in detail the spectrum of quantum excitations of the tunneling field when it undergoes false vacuum decay. We consider a tunneling potential which is piece-wise quadratic, hence is simple enough to allow us an analytical treatment. We find a strong dependence of the excitation spectrum upon the shape of the potential on the true vacuum side. We then discuss features of the excitation spectrum common to general tunneling potentials not restricted to our simple model.Comment: 24 pages, uuencoded compressed postscript fil

    Quantum fluctuations and CMB anisotropies in one-bubble open inflation models

    Get PDF
    We first develop a method to calculate a complete set of mode functions which describe the quantum fluctuations generated in one-bubble open inflation models. We consider two classes of models. One is a single scalar field model proposed by Bucher, Goldhaber and Turok and by us as an example of the open inflation scinario, and the other is a two-field model such as the ``supernatural'' inflation proposed by Linde and Mezhlumian. In both cases we assume the difference in the vacuum energy density between inside and outside the bubble is negligible. There are two kinds of mode functions. One kind has usual continuous spectrum and the other has discrete spectrum with characteristic wavelengths exceeding the spatial curvature scale. The latter can be further devided into two classes in terms of its origin. One is called the de Sitter super-curvature mode, which arises due to the global spacetime structure of de Sitter space, and the other is due to fluctuations of the bubble wall. We calculate the spectrum of quantum fluctuations in these models and evaluate the resulting large angular scale CMB anisotropies. We find there are ranges of model parameters that are consistent with observed CMB anisotropies.Comment: 22 pages revtex file, 12 postscript figures, tarred, gzippe

    Cosmological perturbations from varying masses and couplings

    Full text link
    We study the evolution of perturbations during the domination and decay of a massive particle species whose mass and decay rate are allowed to depend on the expectation value of a light scalar field. We specialize in the case where the light field is slow-rolling, showing that during a phase of inhomogeneous mass-domination and decay the isocurvature perturbation of the light field is converted into a curvature perturbation with an efficiency which is nine times larger than when the mass is fixed. We derive a condition on the annihilation cross section and on the decay rate for the domination of the massive particles and we show that standard model particles cannot dominate the universe before nucleosynthesis. We also compare this mechanism with the curvaton model. Finally, observational signatures are discussed. A cold dark matter isocurvature mode can be generated if the dark matter is produced out of equilibrium by both the inflaton and the massive particle species decay. Non-Gaussianities are present: they are chi-square deviations. However, they might be too small to be observable.Comment: 21 pages, 4 figures, published versio
    • 

    corecore