2,082 research outputs found

    Rheology of Ring Polymer Melts: From Linear Contaminants to Ring/Linear Blends

    Full text link
    Ring polymers remain a major challenge to our current understanding of polymer dynamics. Experimental results are difficult to interpret because of the uncertainty in the purity and dispersity of the sample. Using both equilibrium and non-equilibrium molecular dynamics simulations we have systematically investigated the structure, dynamics and rheology of perfectly controlled ring/linear polymer blends with chains of such length and flexibility that the number of entanglements is up to about 14 per chain, which is comparable to experimental systems examined in the literature. The smallest concentration at which linear contaminants increase the zero-shear viscosity of a ring polymer melt of these chain lengths by 10% is approximately one-fifth of their overlap concentration. When the two architectures are present in equal amounts the viscosity of the blend is approximately twice as large as that of the pure linear melt. At this concentration the diffusion coefficient of the rings is found to decrease dramatically, while the static and dynamic properties of the linear polymers are mostly unaffected. Our results are supported by a primitive path analysis.Comment: 5 pages, 4 figures, accepted by PR

    Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt: I. Statics

    Full text link
    Molecular dynamics simulations were conducted to investigate the structural properties of melts of nonconcatenated ring polymers and compared to melts of linear polymers. The longest rings were composed of N=1600 monomers per chain which corresponds to roughly 57 entanglement lengths for comparable linear polymers. For the rings, the radius of gyration squared was found to scale as N to the 4/5 power for an intermediate regime and N to the 2/3 power for the larger rings indicating an overall conformation of a crumpled globule. However, almost all beads of the rings are "surface beads" interacting with beads of other rings, a result also in agreement with a primitive path analysis performed in the following paper (DOI: 10.1063/1.3587138). Details of the internal conformational properties of the ring and linear polymers as well as their packing are analyzed and compared to current theoretical models.Comment: 15 pages, 14 figure

    Spin Dynamics of the LAGEOS Satellite in Support of a Measurement of the Earth's Gravitomagnetism

    Get PDF
    LAGEOS is an accurately-tracked, dense spherical satellite covered with 426 retroreflectors. The tracking accuracy is such as to yield a medium term (years to decades) inertial reference frame determined via relatively inexpensive observations. This frame is used as an adjunct to the more difficult and data intensive VLBI absolute frame measurements. There is a substantial secular precession of the satellite's line of nodes consistent with the classical, Newtonian precession due to the non-sphericity of the earth. Ciufolini has suggested the launch of an identical satellite (LAGEOS-3) into an orbit supplementary to that of LAGEOS-1: LAGEOS-3 would then experience an equal and opposite classical precession to that of LAGEOS-1. Besides providing a more accurate real-time measurement of the earth's length of day and polar wobble, this paired-satellite experiment would provide the first direct measurement of the general relativistic frame-dragging effect. Of the five dominant error sources in this experiment, the largest one involves surface forces on the satellite, and their consequent impact on the orbital nodal precession. The surface forces are a function of the spin dynamics of the satellite. Consequently, we undertake here a theoretical effort to model the spin ndynamics of LAGEOS. In this paper we present our preliminary results.Comment: 16 pages, RevTeX, LA-UR-94-1289. (Part I of II, postscript figures in Part II

    Nuclear Magnetic Resonance and Hyperfine Structure

    Get PDF
    Contains reports on six research projects

    Designing multiplayer games to facilitate emergent social behaviours online

    Get PDF
    This paper discusses an exploratory case study of the design of games that facilitate spontaneous social interaction and group behaviours among distributed individuals, based largely on symbolic presence 'state' changes. We present the principles guiding the design of our game environment: presence as a symbolic phenomenon, the importance of good visualization and the potential for spontaneous self-organization among groups of people. Our game environment, comprising a family of multiplayer 'bumper-car' style games, is described, followed by a discussion of lessons learned from observing users of the environment. Finally, we reconsider and extend our design principles in light of our observations

    Solar Contamination in Extreme-precision Radial-velocity Measurements: Deleterious Effects and Prospects for Mitigation

    Get PDF
    Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10 cm s−1 sensitivity required for the detection and characterization of terrestrial exoplanets in or near habitable zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID (NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy) precision RV instrument for the WIYN 3.5 m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while "bright time" has been traditionally adequate for RV science, the goal of 10 cm s−1 precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments
    corecore