345 research outputs found
Quantum Superposition of Massive Objects and Collapse Models
We analyze the requirements to test some of the most paradigmatic collapse
models with a protocol that prepares quantum superpositions of massive objects.
This consists of coherently expanding the wave function of a
ground-state-cooled mechanical resonator, performing a squared position
measurement that acts as a double slit, and observing interference after
further evolution. The analysis is performed in a general framework and takes
into account only unavoidable sources of decoherence: blackbody radiation and
scattering of environmental particles. We also discuss the limitations imposed
by the experimental implementation of this protocol using cavity quantum
optomechanics with levitating dielectric nanospheres.Comment: 19 pages, 17 figure
Theory of decoherence in a matter wave Talbot-Lau interferometer
We present a theoretical framework to describe the effects of decoherence on
matter waves in Talbot-Lau interferometry. Using a Wigner description of the
stationary beam the loss of interference contrast can be calculated in closed
form. The formulation includes both the decohering coupling to the environment
and the coherent interaction with the grating walls. It facilitates the
quantitative distinction of genuine quantum interference from the expectations
of classical mechanics. We provide realistic microscopic descriptions of the
experimentally relevant interactions in terms of the bulk properties of the
particles and show that the treatment is equivalent to solving the
corresponding master equation in paraxial approximation.Comment: 20 pages, 4 figures (minor corrections; now in two-column format
Suppression of Pdx-1 perturbs proinsulin processing, insulin secretion and GLP-1 signalling in INS-1 cells
Aims/hypothesis: Mutations in genes encoding HNF-4α, HNF-1α and IPF-1/Pdx-1 are associated with, respectively, MODY subtypes-1, -3 and -4. Impaired glucose-stimulated insulin secretion is the common primary defect of these monogenic forms of diabetes. A regulatory circuit between these three transcription factors has also been suggested. We aimed to explore how Pdx-1 regulates beta cell function and gene expression patterns. Methods: We studied two previously established INS-1 stable cell lines permitting inducible expression of, respectively, Pdx-1 and its dominant-negative mutant. We used HPLC for insulin processing, adenovirally encoded aequorin for cytosolic [Ca2+], and transient transfection of human growth hormone or patch-clamp capacitance recordings to monitor exocytosis. Results: Induction of DN-Pdx-1 resulted in defective glucose-stimulated and K+-depolarisation-induced insulin secretion in INS-1 cells, while overexpression of Pdx-1 had no effect. We found that DN-Pdx-1 caused down-regulation of fibroblast growth factor receptor 1 (FGFR1), and consequently prohormone convertases (PC-1/3 and -2). As a result, DN-Pdx-1 severely impaired proinsulin processing. In addition, induction of Pdx-1 suppressed the expression of glucagon-like peptide 1 receptor (GLP-1R), which resulted in marked reduction of both basal and GLP-1 agonist exendin-4-stimulated cellular cAMP levels. Induction of DN-Pdx-1 did not affect glucokinase activity, glycolysis, mitochondrial metabolism or ATP generation. The K+-induced cytosolic [Ca2+] rise and Ca2+-evoked exocytosis (membrane capacitance) were not abrogated. Conclusions/interpretation: The severely impaired proinsulin processing combined with decreased GLP-1R expression and cellular cAMP content, rather than metabolic defects or altered exocytosis, may contribute to the beta cell dysfunction induced by Pdx-1 deficienc
Internally Electrodynamic Particle Model: Its Experimental Basis and Its Predictions
The internally electrodynamic (IED) particle model was derived based on
overall experimental observations, with the IED process itself being built
directly on three experimental facts, a) electric charges present with all
material particles, b) an accelerated charge generates electromagnetic waves
according to Maxwell's equations and Planck energy equation and c) source
motion produces Doppler effect. A set of well-known basic particle equations
and properties become predictable based on first principles solutions for the
IED process; several key solutions achieved are outlined, including the de
Broglie phase wave, de Broglie relations, Schr\"odinger equation, mass,
Einstein mass-energy relation, Newton's law of gravity, single particle self
interference, and electromagnetic radiation and absorption; these equations and
properties have long been broadly experimentally validated or demonstrated. A
specific solution also predicts the Doebner-Goldin equation which emerges to
represent a form of long-sought quantum wave equation including gravity. A
critical review of the key experiments is given which suggests that the IED
process underlies the basic particle equations and properties not just
sufficiently but also necessarily.Comment: Presentation at the 27th Int Colloq on Group Theo Meth in Phys, 200
Early Treatment with Basal Insulin Glargine in People with Type 2 Diabetes: Lessons from ORIGIN and Other Cardiovascular Trials
Dysglycemia results from a deficit in first-phase insulin secretion compounded by increased insulin insensitivity, exposing beta cells to chronic hyperglycemia and excessive glycemic variability. Initiation of intensive insulin therapy at diagnosis of type 2 diabetes mellitus (T2DM) to achieve normoglycemia has been shown to reverse glucotoxicity, resulting in recovery of residual beta-cell function. The United Kingdom Prospective Diabetes Study (UKPDS) 10-year post-trial follow-up reported reductions in cardiovascular outcomes and all-cause mortality in persons with T2DM who initially received intensive glucose control compared with standard therapy. In the cardiovascular outcome trial, outcome reduction with an initial glargine intervention (ORIGIN), a neutral effect on cardiovascular disease was observed in the population comprising prediabetes and T2DM. Worsening of glycemic control was prevented over the 6.7 year treatment period, with few serious hypoglycemic episodes and only moderate weight gain, with a lesser need for dual or triple oral treatment versus standard care. Several other studies have also highlighted the benefits of early insulin initiation as first-line or add-on therapy to metformin. The decision to introduce basal insulin to metformin must, however be individualized based on a risk-benefit analysis. The landmark ORIGIN trial provides many lessons relating to the concept and application of early insulin therapy for the prevention and safe and effective induction and maintenance of glycemic control in type 2 diabetes
Identification of functional insulin receptors on membranes from an insulin-producing cell line (RINm5F)
Acute appendicitis caused by endometriosis: a case report
<p>Abstract</p> <p>Introduction</p> <p>Endometriosis is a well-recognized gynecological condition in the reproductive age group. Surgical texts present the gynecological aspects of the disease in detail, but the published literature on unexpected manifestations, such as appendiceal disease, is inadequate. The presentation to general surgeons may be atypical and pose diagnostic difficulty. Thus, a definitive diagnosis is likely to be established only by the histological examination of a specimen.</p> <p>Case presentation</p> <p>We report a case of endometriosis of the appendix in a 25-year-old Caucasian woman who presented with symptoms of acute appendicitis and was treated by appendectomy, which resulted in a good outcome.</p> <p>Conclusions</p> <p>We discuss special aspects of acute appendicitis caused by endometriosis to elucidate the pathologic entity of this variant of acute appendicitis.</p
Protective Unfolded Protein Response in Human Pancreatic Beta Cells Transplanted into Mice
Background: There is great interest about the possible contribution of ER stress to the apoptosis of pancreatic beta cells in the diabetic state and with islet transplantation. Methods and Findings: Expression of genes involved in ER stress were examined in beta cell enriched tissue obtained with laser capture microdissection (LCM) from frozen sections of pancreases obtained from non-diabetic subjects at surgery and from human islets transplanted into ICR-SCID mice for 4 wk. Because mice have higher glucose levels than humans, the transplanted beta cells were exposed to mild hyperglycemia and the abnormal environment of the transplant site. RNA was extracted from the LCM specimens, amplified and then subjected to microarray analysis. The transplanted beta cells showed an unfolded protein response (UPR). There was activation of many genes of the IRE-1 pathway that provide protection against the deleterious effects of ER stress, increased expression of ER chaperones and ERAD (ER-associated protein degradation) proteins. The other two arms of ER stress, PERK and ATF-6, had many down regulated genes. Downregulation of EIF2A could protect by inhibiting protein synthesis. Two genes known to contribute to apoptosis, CHOP and JNK, were downregulated. Conclusions: Human beta cells in a transplant site had UPR changes in gene expression that protect against the proapoptotic effects of unfolded proteins
- …
