1,254 research outputs found

    Photoelectrochemical properties of mesoporous NiOx deposited on technical FTO via nanopowder sintering in conventional and plasma atmospheres

    Get PDF
    Nanoporous nickel oxide (NiO x ) has been deposited with two different procedures of sintering (CS and RDS). Both samples display solid state oxidation at about 3.1 V vs Li+/Li. Upon sensitization of CS/RDS NiO x with erythrosine b (ERY), nickel oxide oxidation occurs at the same potential. Impedance spectroscopy revealed a higher charge transfer resistance for ERY-sensitized RDS NiO x with respect to sensitized CS NiO x . This was due to the chemisorption of a larger amount of ERY on RDS with respect to CS NiO x . Upon illumination the photoinduced charge transfer between ERY layer and NiO x could be observed only with oxidized CS. Photoelectrochemical effects of sensitized RDS NiO x were evidenced upon oxide reduction. With the addition of iodine RDS NiOx electrodes could give the reduction iodine → iodide in addition to the reduction of RDS NiO x . p-type dye sensitized solar cells were assembled with RDS NiO x photocathodes sensitized either by ERY or Fast Green. Resulting overall efficiencies ranged between 0.02 and 0.04 % upon irradiation with solar spectrum simulator (Iin : 0.1 W cm −2 )

    Models of organometallic complexes for optoelectronic applications

    Full text link
    Organometallic complexes have potential applications as the optically active components of organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). Development of more effective complexes may be aided by understanding their excited state properties. Here we discuss two key theoretical approaches to investigate these complexes: first principles atomistic models and effective Hamiltonian models. We review applications of these methods, such as, determining the nature of the emitting state, predicting the fraction of injected charges that form triplet excitations, and explaining the sensitivity of device performance to small changes in the molecular structure of the organometallic complexes.Comment: To appear in themed issue of J. Mat. Chem. on the modelling of material

    Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach

    Get PDF
    The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported. The nanodispersed materials obtained show quantum size effects in their optical spectra and exhibit near band-edge luminescence. The influence of experimental parameters on the properties of the nanocrystallites is discussed. HRTEM images of these materials show well-defined, crystalline nanosized particles. Standard size fractionation procedures can be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine, are used as the starting materials for the preparation of novel nanocomposites. The optical properties shown by these new nanocomposites are compared with those of the starting nanodispersed materials

    Influence of electrolyte co-additives on the performance of dye-sensitized solar cells

    Get PDF
    The presence of specific chemical additives in the redox electrolyte results in an efficient increase of the photovoltaic performance of dye-sensitized solar cells (DSCs). The most effective additives are 4-tert-butylpyridine (TBP), N-methylbenzimidazole (NMBI) and guanidinium thiocyanate (GuNCS) that are adsorbed onto the photoelectrode/electrolyte interface, thus shifting the semiconductor's conduction band edge and preventing recombination with triiodides. In a comparative work, we investigated in detail the action of TBP and NMBI additives in ionic liquid-based redox electrolytes with varying iodine concentrations, in order to extract the optimum additive/I2 ratio for each system. Different optimum additive/I2 ratios were determined for TBP and NMBI, despite the fact that both generally work in a similar way. Further addition of GuNCS in the optimized electrolytic media causes significant synergistic effects, the action of GuNCS being strongly influenced by the nature of the corresponding co-additive. Under the best operation conditions, power conversion efficiencies as high as 8% were obtained

    A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials

    Get PDF
    Dye-sensitized solar cells are a promising alternative to traditional inorganic semiconductor-based solar cells. Here we report an open-circuit voltage of over 1,000 mV in mesoscopic dye-sensitized solar cells incorporating a molecularly engineered cobalt complex as redox mediator. Cobalt complexes have negligible absorption in the visible region of the solar spectrum, and their redox properties can be tuned in a controlled fashion by selecting suitable donor/acceptor substituents on the ligand. This approach offers an attractive alternate to the traditional I3−/I− redox shuttle used in dye-sensitized solar cells. A cobalt complex using tridendate ligands [Co(bpy-pz)2]3+/2+(PF6)3/2 as redox mediator in combination with a cyclopentadithiophene-bridged donor-acceptor dye (Y123), adsorbed on TiO2, yielded a power conversion efficiency of over 10% at 100 mW cm−2. This result indicates that the molecularly engineered cobalt redox shuttle is a legitimate alternative to the commonly used I3−/I− redox shuttle

    Tuning of Electrical and Optical Properties of Highly Conducting and Transparent Ta-Doped TiO2 Polycrystalline Films

    Get PDF
    We present a detailed study on polycrystalline transparent conducting Ta-doped TiO2 films, obtained by room temperature pulsed laser deposition followed by an annealing treatment at 550°C in vacuum. The effect of Ta as a dopant element and of different synthesis conditions are explored in order to assess the relationship between material structure and functional properties, i.e. electrical conductivity and optical transparency. We show that for the doped samples it is possible to achieve low resistivity (of the order of 5×10-4 Ωcm) coupled with transmittance values exceeding 80% in the visible range, showing the potential of polycrystalline Ta:TiO2 for application as a transparent electrode in novel photovoltaic devices. The presence of trends in the structural (crystalline domain size, anatase cell parameters), electrical (resistivity, charge carrier density and mobility) and optical (transmittance, optical band gap, effective mass) properties as a function of the oxygen background pressures and laser fluence used during the deposition process and of the annealing atmosphere is discussed, and points towards a complex defect chemistry ruling the material behavior. The large mobility values obtained in this work for Ta:TiO2 polycrystalline films (up to 13 cm2V-1s-1) could represent a definitive advantage with respect to the more studied Nb-doped TiO2
    • …
    corecore