67 research outputs found

    Dual Fermion Dynamical Cluster Approach for Strongly Correlated Systems

    Get PDF
    We have designed a new multi-scale approach for Strongly Correlated Systems by combining the Dynamical Cluster Approximation (DCA) and the recently introduced dual-fermion formalism. This approach employs an exact mapping from a real lattice to a DCA cluster of linear size Lc embedded in a dual fermion lattice. Short-length-scale physics is addressed by the DCA cluster calculation, while longer-length-scale physics is addressed diagrammatically using dual fermions. The bare and dressed dual Fermionic Green functions scale as O(1/Lc) so perturbation theory on the dual lattice converges very quickly. E.g., the dual Fermion self-energy calculated with simple second order perturbation theory is of order O(1/Lc^3), with third order and three body corrections down by an additional factor of O(1/Lc^2)

    Lattice susceptibility for 2D Hubbard Model within dual fermion method

    Full text link
    In this paper, we present details of the dual fermion (DF) method to study the non-local correction to single site DMFT. The DMFT two-particle Green's function is calculated using continuous time quantum monte carlo (CT-QMC) method. The momentum dependence of the vertex function is analyzed and its renormalization based on the Bethe-Salpeter equation is performed in particle-hole channel. We found a magnetic instability in both the dual and the lattice fermions. The lattice fermion susceptibility is calculated at finite temperature in this method and also in another recently proposed method, namely dynamical vertex approximation (DΓ\GammaA). The comparison between these two methods are presented in both weak and strong coupling region. Compared to the susceptibility from quantum monte carlo (QMC) simulation, both of them gave satisfied results.Comment: 10 pages, 11 figure

    One-particle irreducible functional approach - a new route to diagrammatic extensions of DMFT

    Full text link
    We present an approach which is based on the one-particle irreducible (1PI) generating functional formalism and includes electronic correlations on all length-scales beyond the local correlations of dynamical mean field theory (DMFT). This formalism allows us to unify aspects of the dynamical vertex approximation (D\GammaA) and the dual fermion (DF) scheme, yielding a consistent formulation of non-local correlations at the one- and two-particle level beyond DMFT within the functional integral formalism. In particular, the considered approach includes one-particle reducible contributions from the three- and more-particle vertices in the dual fermion approach, as well as some diagrams not included in the ladder version of D\GammaA. To demonstrate the applicability and physical content of the 1PI approach, we compare the diagrammatics of 1PI, DF and D\GammaA, as well as the numerical results of these approaches for the half-filled Hubbard model in two dimensions.Comment: 36 pages, 12 figures, updated versio

    Conservation in two-particle self-consistent extensions of dynamical-mean-field-theory

    Full text link
    Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity models as non-perturbative and exactly solvable reference systems which are essential to treat the strong electronic correlations. Through the introduction of retarded interactions on the impurity, these approximations can be made two-particle self-consistent. This is of interest for the Hubbard model, because it allows to suppress the antiferromagnetic phase transition in two-dimensions in accordance with the Mermin-Wagner theorem, and to include the effects of bosonic fluctuations. For a physically sound description of the latter, the approximation should be conserving. In this paper we show that the mutual requirements of two-particle self-consistency and conservation lead to fundamental problems. For an approximation that is two-particle self-consistent in the charge- and longitudinal spin channel, the double occupancy of the lattice and the impurity are no longer consistent when computed from single-particle properties. For the case of self-consistency in the charge- and longitudinal as well as transversal spin channels, these requirements are even mutually exclusive so that no conserving approximation can exist. We illustrate these findings for a two-particle self-consistent and conserving DMFT approximation.Comment: 17 pages, 9 figure

    Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion

    Get PDF
    We study the charge-density dynamics within the two-dimensional extended Hubbard model in the presence of long-range Coulomb interaction across the metal-insulator transition point. To take into account strong correlations we start from self-consistent extended dynamical mean-field theory and include non-local dynamical vertex corrections through a ladder approximation to the polarization operator. This is necessary to fulfill charge conservation and to describe plasmons in the correlated state. The calculated plasmon spectra are qualitatively different from those in the random-phase approximation: they exhibit a spectral density transfer and a renormalized dispersion with enhanced deviation from the canonical q\sqrt{q}-behavior. Both features are reminiscent of interaction induced changes found in single-electron spectra of strongly correlated systems.Comment: 5 pages, 5 figures + appendix (3 pages, 1 figure

    Superperturbation solver for quantum impurity models

    Get PDF
    We present a very efficient solver for the general Anderson impurity problem. It is based on the perturbation around a solution obtained from exact diagonalization using a small number of bath sites. We formulate a perturbation theory which is valid for both weak and strong coupling and interpolates between these limits. Good agreement with numerically exact quantum Monte-Carlo results is found for a single bath site over a wide range of parameters. In particular, the Kondo resonance in the intermediate coupling regime is well reproduced for a single bath site and the lowest order correction. The method is particularly suited for low temperatures and alleviates analytical continuation of imaginary time data due to the absence of statistical noise compared to quantum Monte-Carlo impurity solvers.Comment: 6 pages, 5 figure

    Theory of optically forbidden d-d transitions in strongly correlated crystals

    Get PDF
    A general multiband formulation of linear and non-linear optical response functions for realistic models of correlated crystals is presented. Dipole forbidden d-d optical transitions originate from the vertex functions, which we consider assuming locality of irreducible four-leg vertex. The unified formulation for second- and third-order response functions in terms of the three-leg vertex is suitable for practical calculations in solids. We illustrate the general approach by consideration of intraatomic spin-flip contributions, with the energy of 2J, where J is a Hund exchange, in the simplest two-orbital model.Comment: 9 pages, 4 figures, to appear in J. Phys. Cond. Matte

    Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory

    Get PDF
    Strong electronic correlations pose one of the biggest challenges to solid state theory. We review recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT). On top of this, non-local correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge-, magnetic-, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. We provide an overview of the successes and results achieved---hitherto mainly for model Hamiltonians---and outline future prospects for realistic material calculations.Comment: 60 pages, 42 figures, replaced by the version to be published in Rev. Mod. Phys. 201

    Dual Fermion Approach to Susceptibility of Correlated Lattice Fermions

    Get PDF
    In this paper, we show how the two-particle Green function (2PGF) can be obtained within the framework of the Dual Fermion approach. This facilitates the calculation of the susceptibility in strongly correlated systems where long-ranged non-local correlations cannot be neglected. We formulate the Bethe-Salpeter equations for the full vertex in the particle-particle and particle-hole channels and introduce an approximation for practical calculations. The scheme is applied to the two-dimensional Hubbard model at half filling. The spin-spin susceptibility is found to strongly increase for the wavevector \vc{q}=(\pi,\pi), indicating the antiferromagnetic instability. We find a suppression of the critical temperature compared to the mean-field result due to the incorporation of the non-local spin-fluctuations.Comment: 10 pages, 5 figures; substantially extended results section compared to version
    corecore