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In this paper, we show how the two-particle Green function (2PGF) can be obtained within
the framework of the Dual Fermion approach. This facilitates the calculation of the susceptibility
in strongly correlated systems where long-ranged non-local correlations cannot be neglected. We
formulate the Bethe-Salpeter equations for the full vertex in the particle-particle and particle-hole
channels and introduce an approximation for practical calculations. The scheme is applied to the
two-dimensional Hubbard model at half filling. The spin-spin susceptibility is found to strongly
increase for the wavevector q = (π, π), indicating the antiferromagnetic instability. We find a
suppression of the critical temperature compared to the mean-field result due to the incorporation
of the non-local spin-fluctuations.

PACS numbers: 71.10.Fd, 71.28.+d, 71.45.Gm

I. INTRODUCTION

Strongly correlated electron systems exhibit some of
the most intriguing features known to condensed mat-
ter physics, including high-temperature superconductiv-
ity, heavy-fermion behavior, different kinds of electronic
phase transitions, etc.1,2,3,4,5. In most of the cases, a
conventional band theory6,7 is not sufficient to describe
these properties. Essentially a many-body treatment is
necessary, correlation effects being too strong to be de-
scribed by the standard perturbation theory. Due to the
complexity of this problem the physics of strongly cor-
related systems has proven to be theoretically challeng-
ing. One of the successful routes to the description of
strongly correlated systems is the Dynamical Mean Field
Theory (DMFT)8,9. It is commonly accepted now that
this approach typically catches the most essential cor-
relation effects, e.g., the physics of the Mott-Hubbard
transition8,9. The method was implemented success-
fully into realistic electronic structure calculations10,11,
which is now a standard tool in the microscopic theory of
strongly correlated systems12. However, there are many
phenomena for which non-local correlations are impor-
tant and often the relevant correlations are even long-
ranged. Among them are the Luttinger-liquid formation
in low-dimensional systems3,13, non-Fermi-liquid behav-
ior due to van-Hove singularities in two dimensions14,15,
the physics near quantum critical points16, or d-wave
pairing in high-Tc superconductors4.

The requirement to incorporate spatial correlations
of strongly correlated fermions into present theories
has triggered several efforts to go beyond DMFT. In
the Dynamical Vertex Approximation17 and similar
approaches18,19, a diagrammatic expansion around the
DMFT solution is performed. In Ref. 17, the authors
introduce a scheme based on the assumption of the local-
ity of the fully irreducible vertex of the lattice problem.
In the framework of their approximation this vertex is

extracted from the Anderson impurity model. The re-
ducible vertex can be obtained from the parquet equa-
tions which is subsequently used to calculate the non-
local self-energy. The Green function is updated and the
parquet equations are solved again until self-consistency
is reached. In the work cited above a simplified version
of this algorithm was implemented, where instead of the
parquet equations the Bethe-Salpeter equation (BSE) in
a particular channel was solved without performing a self-
consistent calculation. Hence, this approach does not go
beyond the usual DMFT approximation for calculating
the two-particle Green functions (2PGFs). Practically, to
go well beyond DMFT within this approach, the parquet
equations, which form a complicated system of coupled
integral equations need to be solved repeatedly, which
requires a sizeable numerical effort.

A principally new scheme with a fully renormalized
expansion called Dual Fermion Approach has been pro-
posed recently20. It is based on the introduction of new
variables in the path integral representation. This ap-
proach yields very satisfactory results already for the
lowest-order corrections, while the schemes proposed
in Refs.17,18,19 operate with infinite diagrammatic se-
ries and require the solution of complicated integral
equations. A scheme similar to the Dual Fermion ap-
proach has been discussed earlier in terms of Hubbard
operators21, but has not been used for practical calcula-
tions.

In many cases, it is desirable to calculate the 2PGF
which provides insight into the inter-particle interactions
and two-particle excitations of the system and corre-
sponding instabilities. In the framework of DMFT the
2PGFs are usually calculated under the assumption that
the irreducible vertex part in a given channel is local and
it is taken to be equal to the corresponding irreducible
vertex of the impurity problem. This assumption is em-
pirical and does not hold in the general case22.

In this paper we describe how to perform calculations
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of the 2PGF within the Dual Fermion approach. We
will show that already a simple ladder approximation
gives very reasonable results for the Hubbard model at
half filling, for example a reduction of the critical tem-
perature of the antiferromagnetic instability compared
to the DMFT result is obtained already in the frame-
work of the single-site calculations. It occurs at the Néel
temperature which is in agreement with quantum Monte
Carlo results23 for the same parameters. It is remark-
able that to obtain these results it is sufficient to take
the bare dual fermion vertex as the irreducible vertex in
the Bethe-Salpeter equations and only the lowest-order
diagram for the dual self-energy. Such effectiveness is
achieved by transforming the original interacting prob-
lem to so-called dual fermion variables. By this we are
able to include the local contribution to the self-energy
into a bare propagator of the dual fermions and achieve a
much faster convergence of the perturbation series. The
outcome of the scheme is the 2PGF in the original vari-
ables restored from the dual 2PGF with the help of an
exact relation24.

This paper is organized as follows: In Section II we
review the dual fermion formalism in the general multi-
band formulation. Section III gives a general overview of
the exact equations for the 2PGFs in different channels.
We then discuss various possible approximations which
should be used for different purposes. We further derive
the exact relation between 2PGFs in the dual and original
variables. Section IV is devoted to the application of the
approach to the two-dimensional (2D) Hubbard model
at half filling and to the discussion of those results. In
section V we give the conclusions and summary.

II. DUAL FERMION FORMALISM

The goal is to find an (approximate) solution to the
general multiband problem described by the imaginary
time action

S[c∗, c] = −
∑

ωkσmm′

c∗ωkσm ((iω + µ)1 − hkσ)mm′ cωkσm′

+
∑

i

Hint[c
∗
i , ci] . (1)

Here hkσ is the one-electron part of the Hamiltonian,
ωn = (2n + 1)π/β, n = 0,±1, ... are the Matsubara fre-
quencies, β and µ are the inverse temperature and chem-
ical potential, respectively, σ =↑, ↓ labels the spin projec-
tion, m, m′ are orbital indices and c∗, c are Grassmann
variables. The index i labels the lattice sites and the
k-vectors are quasimomenta. For applications it is im-
portant to note that Hint can be any type of interac-
tion. The only requirement is that it is local within the
multiorbital atom or cluster. Consider, for example, the

general Coulomb interaction

Hint[c
∗
i , ci] =

1

4

β
∫

0

dτ U1234c
∗
i1c

∗
i2ci4ci3 , (2)

where U is the general symmetrized Coulomb vertex and
e.g. 1 ≡ {ω1m1σ1} comprehends frequency-, orbital- and
spin degrees of freedom and summation over these states
is implied.

The idea of the dual fermion approach is to reformulate
the lattice problem in terms of noninteracting impurities
with their interaction replaced by a coupling to auxiliary,
so-called dual fermions.

As in the DMFT, we therefore introduce a local impu-
rity problem in the form

Simp[c
∗, c] = −

∑

ωσmm′

c∗ωσm ((iω + µ)1 − ∆ωσ)mm′ cωσm′

+ Hint[c
∗, c] , (3)

where ∆ is an as yet unspecified hybridization matrix
describing the interaction of the impurity cluster with an
electronic bath.

Since we anticipate the decoupling of the interacting
sites, we employ the locality of ∆ to formally rewrite the
original lattice problem in the following form:

S[c∗, c] =
∑

i

Simp[c
∗
ωiσm, cωiσm]

−
∑

ωkσmm′

c∗ωkσm (∆ωσ − hkσ)mm′ cωkσm′ .

(4)

We introduce spinors cωkσ = (. . . , cωkσm, . . .), c∗ωkσ =
(. . . , c∗ωkσm, . . .). Omitting indices, the dual fermions
are introduced via a Gaussian identity which in matrix-
vector notation reads

∫

exp
(

−f∗Âf − f∗B̂c− c∗B̂f
)

D[f∗, f ] =

det(Â) exp
(

c∗B̂Â−1B̂c
)

. (5)

This identity is valid for arbitrary complex matrices Â
and B̂. Choosing

A = g−1
ωσ (∆ωσ − hkσ)

−1
g−1

ωσ ,

B = g−1
ωσ , (6)

where gωσ is the Green function matrix of the local im-
purity problem in orbital space (m, m′), we obtain:

S[c∗, c, f∗, f ] =
∑

i

Ssite,i +

∑

ωkσ

[

f∗ωkσ g−1
ωσ (∆ωσ − hkσ)

−1
g−1

ωσ fωkσ

]

. (7)
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Hence the coupling between sites is transferred to a cou-
pling to the auxiliary fermions:

Ssite,i = Simp[c
∗
i , ci] + f∗ωiσ g−1

ωσcωiσ + c∗ωiσ g−1
ωσfωiσ . (8)

Note that since gωσ is local and the last term appears
under a sum over all states labeled by k, the summation
can be replaced by the equivalent summation over all
sites.

By transferring the inter-site coupling to interacting
auxiliary fermions, only local degrees of freedom of the
original fermions remain, so that we are able to integrate
out the lattice fermions for each site separately:

∫

exp (−Ssite[c
∗
i , ci, f

∗
i , fi])D[c∗i , ci] =

Zimpe
−(

P

ωσ f
∗

ωiσ g−1
ωσ fωiσ+Vi[f

∗

i ,fi]) . (9)

Formally this can be done up to all orders and in this
sense the transformation to the dual fermions is exact.
The above equation may be viewed as the defining equa-
tion for the dual potential V [f∗, f ]. Expanding both sides
of Eqn. (9) and equating the resulting expressions by
order, one finds that the dual potential in lowest order
approximation is given by

V [f∗, f ] =
1

4

∑

i

γ
(4)
1234f

∗
i1f

∗
i2fi4fi3 + . . . (10)

where

γ
(4)
1234 = g−1

11′g
−1
22′

[

χimp
1′2′3′4′ − χimp,0

1′2′3′4′

]

g−1
3′3g

−1
4′4 ,

χimp,0
1234 = g14g23 − g13g24 (11)

is the exact four-point reducible vertex for the original
fermions which plays the role of the bare effective two-
particle interaction for the dual fermions. The local two-
particle Green function of the impurity model is defined
as

χimp
1234 =

1

Zimp

∫

c1c2c
∗
3c

∗
4 exp (−Simp[c

∗, c])D[c∗, c] .

(12)
The dual action now depends on dual variables only and
can be written as

Sd[f
∗, f ] = −

∑

ωkσ

f∗ωkσ(Gd,0
ωkσ)−1fωkσ+

∑

i

V [f∗i , fi] . (13)

The bare dual Green function is given by

Gd,0
ωkσ = −gωσ

[

gωσ + (∆ωσ − hkσ)−1
]−1

gωσ . (14)

As we shall see below, for a properly chosen ∆, the
DMFT result is already recovered within the simplest
(zero-order) approximation for the dual potential V . In
order to obtain the nonlocal corrections to the DMFT, we
thus need to calculate the dual self-energy up to higher
orders in V . This is achieved by performing a regular

FIG. 1: The first two lowest order diagrams for the dual self
energy Σd.

diagrammatic series expansion of the dual action, Eqn.
(13).

We note that the only approximation is that in prac-
tice the perturbation series expansion and the series for
the dual potential need to be terminated at some point.
Here we consider the first two lowest order skeleton di-
agrams for Σd, constructed from the irreducible vertices
and the dual Green function as lines. The use of skeleton
diagrams ensures that the resulting theory is conserving
according to the Baym-Kadanoff criterion20,25. The dia-
grams considered here are shown in Fig. 1. The lowest
order diagram is local while the next diagram already
gives a nonlocal contribution to the self energy.

So far we have not established a condition for ∆, which
was so far an arbitrary quantity. We require that the
first diagram (Fig. 1a) in the expansion of the dual self-
energy should be equal to zero at all frequencies. Since
γ(4) is local, we can use the condition

∑

k
Gd

kω = 0. In
the simplest approximation, which corresponds to non-
interacting dual fermions, the full dual Green function is
replaced by the corresponding bare Green function and
the above condition can be reduced to

∑

k

[

gωσ + (∆ωσ − hkσ)
−1

]−1

= 0 (15)

which is equivalent to the self-consistency condition for
the hybridization function in DMFT.

Thus, the case of non-interacting dual fermions corre-
sponds to the full DMFT result for the original fermions.
In order to go beyond DMFT it is sufficient to include
a finite number of non-vanishing skeleton dual diagrams.
In this paper all calculations are performed using only
the lowest order non-vanishing skeleton diagram shown
in Fig. 1b). We postpone the explanation of the resulting
numerical calculation procedure to section IV.

The fact that we have employed an exact identity to
transform to the dual variables has the important conse-
quence that we can establish an exact relation between
the lattice Green function and the dual Green function.
This is important to obtain the Green functions for the
original fermions without loss of information. We will
further use this fact to establish the relation between
original and dual 2PGFs. To this end, the partition func-
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tion of the lattice is written in the two equivalent forms

Z =

∫

exp (−S[c∗, c])D[c∗, c] =

Zf

∫ ∫

exp (−S[c∗, c, f∗, f ])D[f∗, f ]D[c∗, c] ,

(16)

where

Zf =
∏

ωkσ

det [gωσ (∆ωσ − hkσ) gωσ] . (17)

In the following, we introduce the quantities

Lωkσ = (∆ωσ − hkσ)
−1

g−1
ωσ (18)

and

Rωkσ = g−1
ωσ (∆ωσ − hkσ)

−1
(19)

which are matrices in orbital space. By taking the func-
tional derivative of the partition function, Eqn. (16),
w.r.t. the Hamiltonian, the exact relation between the
dual and lattice Green functions can now conveniently
be written as

Gωkσ = (∆ωσ − hkσ)−1 + Lωkσ Gd
ωkσ Rωkσ (20)

where the Green functions are defined via the imaginary
time path integral as

G12 = −
1

Z

∫

c1c
∗
2 exp (−S[c∗, c])D[c∗, c]

Gd
12 = −

Zf

Z

∫

f1f
∗
2 exp (−S[f∗, f ])D[f∗, f ] .

(21)

III. TWO-PARTICLE GREEN FUNCTION.

A. Relation between 2PGF’s in the original and

dual variables.

Analogously to the single-particle Green function, the
connection between the original and dual 2PGF’s can be
established by taking the second derivative with respect
to hνµ of the partition function Z expressed in two differ-
ent ways: Eqn. (16). Here and further the small Greek
letters denote the set {ω,k, σ, m} and the summation
over repeated indices is implied. The 2PGFs are defined
in a similar way as in Eqn. (12):

χλµνρ =
1

Z

∫

cλcµc∗νc∗ρ exp (−S[c∗, c])D[c∗, c] . (22)

χd
λµνρ =

Zf

Z

∫

fλfµf∗
ν f∗

ρ exp (−Sd[f
∗, f ])D[f∗, f ] . (23)

Varying the first expression for Z yields by definition:

1

Z

δ2Z

δhρλδhνµ

= χλµνρ. (24)

The most illustrative way to vary the second expression
for Z from Eqn. (16) is to write

1

Z

δ2Z

δhρλδhνµ

=
1

Z

δ

δhρλ

(

δZ

δhνµ

)

= −
1

Z

δ

δhρλ

(Z Gµν) .

In the last expression we should use Eqn. (20) for G un-
derstanding it as being diagonal in frequency, momenta
and spin indices. From these two expressions we further

obtain χλµνρ = GλρGµν −
δGµν

δhρλ
. Using the identity

dA−1
αβ(x)

dx
= −A−1

αγ

dAγδ

dx
A−1

δβ

for the derivative of an inverse matrix with respect to a
parameter and the Eqn. (20) we can rewrite the func-
tional derivative of G as

δGµν

δhρλ

= (∆ − h)
−1
λν (∆ − h)

−1
µρ + Lµµ′

δGd
µ′ν′

δhρλ

Rν′ν

(∆ − h)−1
λν [L Gd R]µρ + [L Gd R]λν (∆ − h)−1

µρ .(25)

The derivative in the last term in Eqn. (25) is evalu-
ated using the definition of the dual Green function, Eqn.
(21) and the identity

δ

δhρλ

(

Z

Zf

)

= −Lλλ′

Z

Zf

Gd
λ′ρ′ Rρ′ρ . (26)

Thus,

δGd
µ′ν′

δhρλ

= Lλλ′ (Gd
λ′ρ′Gd

µ′ν′ − χd
λ′µ′ν′ρ′)Rρ′ρ . (27)

Using Eqn. (27) in (25), we obtain the final result:

χλµνρ =
[

(∆ − h)
−1

⊗ (∆ − h)
−1

]

λµνρ

+
[

(∆ − h)−1 ⊗ [L Gd R]
]

λµνρ

+
[

[L Gd R] ⊗ (∆ − h)−1
]

λµνρ

+Lλλ′ Lµµ′ χd
λ′µ′ν′ρ′ Rν′ν Rρ′ρ , (28)

where (A ⊗ B)λµνρ ≡ AλρBµν − AλνBµρ is the anti-
symmetrized direct matrix product.

The formula (28) can be (symbolically) rewritten as

χ − G ⊗ G = L L (χd − Gd ⊗ Gd)R R, (29)

which shows quite clearly that the two particle excita-
tions in the original and dual variables are identical.
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B. Bethe-Salpeter Equations for Dual Fermions

As is clearly seen from the end of the previous section,
the problem of calculating the 2PGF in the original vari-
ables reduces to the problem of calculating it for the dual
fermions. In this section we review the standard Bethe-
Salpeter equation approach to this problem and justify
the approximations we use in the calculations, the details
of the latter will be given in Section IV.

In what follows we denote the 2PGF as χ and the ver-
tices as Γ. Different sub- and superscripts will be used to
distinguish between different channels and types of ver-
tices. Small Greek letters stand for the set ω, k, m (or
with appropriate changes ω → τ and/or k → x if the cal-
culations are done in imaginary time or real space), spin
will be taken into account explicitly. We also omit the
index “d” for “dual” unless it is necessary for the sake of
clarity. Otherwise all quantities used are dual by default.

The full vertex Γ is defined by:

χσσ′

λµνρ = Gσ
λλ′Gσ′

µµ′Γσσ′

λ′µ′ν′ρ′Gσ′

ν′νGσ
ρ′ρ

+Gσ
λρG

σ′

µν − Gσ
λνGσ′

µρδσσ′ . (30)

For this vertex one can write three different Bethe-
Salpeter equations:

Γσσ′

λµνρ = Γpp,σσ′,ir
λµνρ + ξΓpp,σσ′,ir

λµµ′λ′ Gσ
λ′ρ′Gσ′

µ′ν′Γσσ′

ρ′ν′νρ,

(31)

Γσσ̄
λµνρ = Γph1,σσ̄,ir

λµνρ − Γph1,σ,σ̄,ir
λν′νλ′ Gσ

λ′ρ′Gσ̄
µ′ν′Γσσ̄

ρ′µµ′ρ,

(32)

Γσσ′

λµνρ = Γph0,σσ′,ir
λµνρ − Γph0,σσ′′,ir

λρ′λ′ρ Gσ′′

λ′ν′Gσ′′

µ′ρ′Γσ′′σ′

ν′µνµ′ ,

(33)

where σ̄ denotes −σ and ξ := 1 − 1
2δσσ′ . These equa-

tions are written in different channels. The first one in
the particle-particle channel and the latter two in the
particle-hole channel. The two ph-channels differ from
each other by the total spin (0,1) of the scattered particle-
hole pair. Γir stands for the irreducible vertex in the
corresponding channel.

Obviously, the problem of calculating Γ is numerically
solvable if Γir is known. The simplest possible approxi-
mation for any irreducible vertex is the bare four-point
interaction of dual fermions i.e. γ(4). In this paper we
will not go beyond this approximation for practical cal-
culations. Substituting it into Eqns. (32,33) we obtain
approximations for the exact vertex Γ in the respective
channel:

Γpp,σσ′

λµνρ = γ
(4)σσ′

λµνρ + ξγ
(4)σσ′

λµµ′λ′G
σ
λ′ρ′Gσ′

µ′ν′Γ
pp,σσ′

ρ′ν′νρ ,

(34)

Γph1,σσ̄
λµνρ = γ

(4)σσ̄

λµνρ − γ
(4)σσ̄

λν′νλ′G
σ
λ′ρ′Gσ̄

µ′ν′Γ
ph1,σσ̄
ρ′µµ′ρ ,

(35)

Γph0,σσ′

λµνρ = γ
(4)σσ′

λµνρ − γ
(4)σσ′′

λρ′λ′ρ Gσ′′

λ′ν′Gσ′′

µ′ρ′Γ
ph0,σ′′σ′

ν′µνµ′ .

(36)

We expect this approximation to capture the essential
features of the problem if the channel is chosen prop-
erly. Indeed, as can be seen from the previous works on
dual fermions, the results for the Green function turn
out to be qualitatively correct already in the lowest or-
der in γ, this means that γ is a good small parameter in
the problem. Our expectations are justified by numerical
calculations for the 2D Hubbard model at half-filling in
the next section. It is worth mentioning here that we do
not expect this simple approximation to give quantita-
tively correct results for superconductivity, as the spin-
spin correlations are known to be of high importance for
the d-wave superconductivity of the Hubbard model. In
order to approach this problem first the vertex in the
ph-channel should be calculated and the result should be
used as an approximation for the irreducible vertex in
the pp-channel. This work is in progress now.

We also want to comment on the standard DMFT ap-
proach for calculating the 2PGFs. As has been men-
tioned before, the DMFT result for Green function is
reproduced from the dual fermion approach if the bare
dual Green functions are used. On the other hand, if
such an attempt is made for the 2PGF, i.e. the bare
dual Green functions and the bare dual four-point vertex
γ are inserted in the Eqn. (28), we do not reproduce the
DMFT result. Instead what we obtain is:

χ − GD ⊗ GD = L L (Gd,0Gd,0γ(4)Gd,0Gd,0)R R , (37)

where GD = (g−1+(∆−h))−1 is the DMFT lattice Green
function. Using the relation (∆ − h)−1g−1Gd,0 = −GD

(which can be proven by straightforward calculation)
leads to:

χ − GD ⊗ GD = GDGDγ(4)GDGD (38)

In the last expression γ(4) - being the full vertex of the
Anderson impurity model - can be symbolically written
in form of a Bethe-Salpeter equation:

γ(4) = γir + γir g g γ(4). (39)

If here we replace the local Green functions g in the lad-
der by GD, we immediately restore the conventional re-
sult for the 2PGF in DMFT approach: χ = χ0 + χ0γ

irχ
with χ0 = GD ⊗ GD. But this substitution can only
be done “by hand” and as is obvious from the structure
of the dual diagrams cannot be reproduced automati-
cally at any order of the perturbation theory. This is
an indication that the conventional way to calculate the
2PGF is not Φ-derivable and does not constitute a sys-
tematic way to calculate the k-dependent vertex function.
This drawback is excluded in our approach. However,
the DMFT approach still works reasonably. One can see
that by noticing that g = GD−Gd,0 (derived straightfor-
wardly). The local part of Gd,0 vanishes by construction
and the non-local part is generally small. Thus one can
say that the DMFT approach to calculating the 2PGF
corresponds to considering the first non-trivial diagram



6

for the dual 2PGF with a small change of a part of the
internal Green functions of the vertex.

Finally we would like to mention that apart from γ(4)

also higher cumulants are present in the dual fermion
approach. We do not expect them to be important for
calculating the 2PGF and do not take them into account
in this paper. However, the 6-point vertex γ(6) which
plays the role of the effective 3-particle interaction for the
dual variables can turn out to be of crucial importance
for non-linear optics calculations.

IV. APPLICATION TO THE 2D HUBBARD

MODEL

Let us now turn to the Hubbard model. The 2D Hub-
bard model is described by the Hamiltonian

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ , (40)

with the bare dispersion relation given by hk =
−2t(coskx + cos ky). In the following the energy scale is
fixed by setting the nearest neighbor hopping tij = t = 1.
In this study, we restrict ourselves to the case of half-
filling and postpone the case of finite doping including
an analysis of the superconducting instability to a later
publication.

It is known that at low temperatures strong anti-
ferromagnetic correlations develop in the 2D Hubbard
model at half-filling. This is due to the perfect nest-
ing of the Fermi surface. Rigorously speaking, a tran-
sition to a long-range ordered state at finite tempera-
tures cannot occur since this would break the continu-
ous spin symmetry, which is prohibited by the Mermin-
Wagner theorem26. For calculations however, one should
keep in mind that a transition to the antiferromagnetic
state is possible: Being bound to approximations, the
fluctuations responsible for destroying the long-range or-
der are not fully accounted for and the implications of
the Mermin-Wagner theorem are not applicable. In this
section we study how the antiferromagnetic instability
emerges within our approach and how the transition tem-
perature compares with that obtained within the DMFT.

The calculations are performed for the 2D Hubbard
model at half-filling within the paramagnetic phase. In
this publication, we restrict ourselves to the application
of the single-site dual fermion approach. As a prereq-
uisite for a better understanding on how the corrections
to the DMFT emerge, we first briefly review the calcula-
tion procedure. Then, in order to illustrate the method
and to underline some of the implications from the sus-
ceptibility calculations, we first present some results for
single-particle properties obtained from DMFT and dual
fermion (DF) calculations. Afterwards, explicit expres-
sions for the solution of the Bethe-Salpeter equation and
the calculation of susceptibilities are introduced. Then
we discuss the two-particle properties obtained using the

FIG. 2: (Color online) Illustration of the dual fermion calcu-
lation procedure.

ladder approximations to the 2PGF discussed in the pre-
ceding section. In order to compare the DF and DMFT
results, we transform the dual susceptibility to the corre-
sponding result for the original lattice fermions. The DF
results are then contrasted to the corresponding DMFT
results for different values of the on-site repulsion and
different temperatures. We find considerable corrections
to the DMFT from our DF calculations, in particular for
large values of U .

A. Dual Fermion calculations

Since the method is rather new, let us first briefly re-
view the calculation procedure. Additional information
can be found in Refs. 20 and 24. Each calculation is
started with a regular self-consistent DMFT calculation.
This is achieved by requiring the local part of the bare
dual fermion propagator (i.e. no corrections to the dual
self-energy are taken into account as indicated by the
crossed diagram in Fig. 2) to be zero. We then calculate
the vertex γ(4). This enables us to calculate an approx-
imation to the dual self-energy by summing up the first
diagrams in the perturbation series expansion. From this
and the bare dual Green function an approximation to
the dual Green function Gd is obtained via Dyson’s equa-
tion, which is subsequently used in the diagrams. This
inner loop is executed until self-consistency. This effec-
tively replaces the diagrams depicted in Fig.1 by the cor-
responding skeleton diagrams. In general, the first-order
diagram is now non-zero, in contrast to the DMFT result.
From the condition that this diagram should be zero,
we construct a new hybridization function, which serves
as input for the calculation of a new local Green func-
tion and renormalized vertex γ(4) in the impurity solver
step. We repeat this outer loop until self-consistency
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is reached. The computational cost for the calculations
aside from DMFT is comparable to the DMFT itself,
whereby the calculation of the vertex is the computation-
ally most expensive part. We use the continuous-time
quantum Monte Carlo impurity solver27,28,29 for the so-
lution of the impurity problem and for the calculation of
the vertex.

B. Single-particle properties

In this section we present some characteristic single-
particle properties to illustrate our approach. All calcu-
lations have been performed for U = 4 and 8. Note that
the bandwidth is W = 8t = 8.

To begin with, we present results for the local density
of states (see Fig. 3). For U = 4, we find qualitatively
the same behavior within the DMFT and DF calcula-
tions, with the difference in the DF result being a sup-
pression of the spectral weight around the Fermi energy
compared to DMFT. For this value of U the gap does not
open, but in should be noted that in order to fully open
a gap e.g. within the dynamical cluster approximation
(DCA) requires large clusters of the order of 64 sites30,31.
At U = 8 however, we find a drastic change in the lo-
cal density of states when the dual corrections are taken
into account. We observe qualitatively similar changes
in a broad temperature range above the critical temper-
ature. In the DF calculations, the spectral weight around
the Fermi level is strongly suppressed. This results in a
pseudogap which persists up to higher temperatures. It
is believed to be caused by non-local spin fluctuations,
which are not present in the DMFT.

This further suggests that non-local corrections to the
DMFT self-energy become important in this parameter
regime. To underline this picture, we show the real and
imaginary parts of the k-dependent lattice self-energy on
the first Matsubara frequency. Within DMFT, this quan-
tity is just a constant, Σ(πT,k) = Σ(πT ). For the case of
large on-site repulsion, we find a strong renormalization
of the bare dispersion law hk as shown in Fig. 4. Also
the imaginary part of the self-energy exhibits a strong
k-dependence (see Fig 5). Qualitatively similar features
are found for higher temperatures.

A quantity which is directly accessible to experimen-
tal observation via angular resolved photo emission spec-
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FIG. 3: Local density of states for the 2D Hubbard model
at half-filling obtained within DMFT (dashed lines) and dual
fermion calculations (solid lines) for U/t = 4 (left) and U/t =
8 (right) at inverse temperature β = 4.5.

FIG. 4: (Color online) Contour plot of the real part of the
lattice self-energy on the first Matsubara frequency ℜΣ(ω =
πT,k) (centered at the Γ-point) for U/t = 4 (left) and U/t = 8
(right), calculated on a grid of 256 × 256 k-points at inverse
temperature β = 3.5.

FIG. 5: (Color online) Contour plot of the imaginary part
of the lattice self-energy ℑΣ(ω = πT,k) (centered at the Γ-
point) for U/t = 4 (left) and U/t = 8 (right) at inverse tem-
perature β = 3.5.

troscopy is the single-particle spectral function A(k, ω).
In Fig. 6 we show A(k, ω) for U = 8 and β = 4.5 ob-
tained from the DMFT and DF calculations, respectively.
As expected from the local density of states, the DMFT
and DF spectral functions are quite different. The most
striking feature is the absence of a coherent peak at the
Fermi level in the DF calculations. Our DF spectral func-
tion very well resembles the characteristic features of the
one given in Ref. 32. In this work, an approach based on
Hubbard operators including spin-fluctuation corrections
to the self-energy has been used. The self-energy was
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FIG. 6: Spectral function for the 2D Hubbard model at half-
filling obtained within DMFT (left) and DF (right) calcula-
tions for U/t = 8 at inverse temperature β = 4.5. From bot-
tom to top, the curves are plotted along the high-symmetry
lines Γ → X → M → Γ. The high symmetry points X and
M are marked by dashed lines.
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FIG. 7: (Color online) Comparison of the DMFT Weiss field
g0(iω) = [iω + µ−∆(iω)]−1 and its modification after a fully
self-consistent dual fermion calculation (DF), for U/t = 4
(left) and U/t = 8 (right). The dashed curves correspond
to the inverse temperature β = 3.5 and the solid curves to
β = 4.5.

obtained from the self-consistent solution of a two-site
dynamical cluster problem and is thus computationally
more involved than our single-site approach. In addition,
it treats the local (i.e. nearest-neighbor) correlations ex-
plicitly. This option is also present within the cluster-
formulation of our approach.

Since obviously the DMFT insufficiently describes the
physics leading to the appearance of the pseudogap, one
might expect that the dynamical mean field, which de-
scribes the influence of the surrounding sites in a mean
field manner, does not accurately reflect the surrounding
in the real system. In such a case, the renormalization
of the hybridization function ∆(iω) (cf. Fig. 2) should
become important. This can be seen in Fig. 7, where we
compare the Weiss field g0(iω) = [iω+µ−∆(iω)]−1 from
the DMFT and DF calculations. For U = 4, the change
is small and almost does not depend on temperature. On
the other hand, for U = 8, we find a strong renormaliza-
tion, which significantly increases when the temperature
is lowered. This reflects the fact that the local singlet for-
mation prevails at low temperatures. Also note that the
DMFT result hardly depends on temperature, in contrast
to the DF results.

C. Solution of the Bethe-Salpeter equation

In order to calculate the susceptibilities, we need to
calculate the reducible two-particle vertex by solving the
Bethe-Salpeter equation. Explicitly, the Bethe-Salpeter
equations in the singlet and triplet particle-hole channels
(see Fig. 8) are

Γph0,σσ′

ωω′Ω (q) = γσσ′

ωω′Ω −
1

βNd

∑

ω′′σ′′

∑

k

γσσ′′

ωω′′ΩGdσ′′

ω′′ (k) ×

×Gdσ′′

ω′′+Ω(k + q) Γph0,σ′′σ′

ω′′ω′Ω (q)

(41)

Γph1,σσ̄
ωω′Ω (q) = γσσ̄

ωω′Ω −
1

βNd

∑

ω′′

∑

k

γσσ̄
ωω′′ΩGdσ̄

ω′′(k) ×

×Gdσ
ω′′+Ω(k + q) Γph1,σσ̄

ω′′ω′Ω (q) .

(42)

Here γ is the irreducible vertex and Gdσ
ω (k) denotes the

fully self-consistent nonlocal dual fermion propagator. To
be complete, we wrote the spin indices on the propaga-
tors. The calculations however are carried out for the
paramagnetic case, i.e. Gdσ = Gdσ̄. Capital letters Ω
denote the bosonic and small letters fermionic Matsub-
ara frequencies. N is the linear dimension of the lattice
and d the dimension. Due to the ladder approximation,
the resulting fully reducible vertex Γ only depends on a
single momentum q.

The Bethe-Salpeter equation is solved iteratively. A
starting guess for the fully reducible vertex Γ = Γ(0) is in-
serted into the equation and a new approximation Γ(1) is
obtained. This process is repeated until self-consistency.
As a convergence criterion we require the difference be-
tween two successive iterations to be smaller than some
predetermined accuracy ǫ, i.e ‖Γ(n+1) − Γ(n)‖ < ǫ. As
a measure for the deviation we use the entrywise norm
‖A‖ =

∑

ij |aij |. In principle it is possible to solve the

Bethe-Salpeter equation by supermatrix inversion (which
requires a decoupling of the singlet channel into spin and
charge channels). However, close to the instability one
would be faced with the intricate task of inverting ill-
conditioned matrices. When iterating the equation the
instability is signaled by a decelerated convergence. This
is related to the fact that the leading eigenvalue of the
corresponding matrix tends to one, so that more and
more diagrams in the ladder need to be taken into ac-
count in order to obtain an accurate result. If one is
not interested in the susceptibility itself but only in the
instability, this can be circumvented by locating the in-
stability by finding the parameters for which the lead-
ing eigenvalue of the BSE-related eigenvalue problem be-
comes one.

Note that the convolution of the two Green functions
in Eqns. (41,42) involves a sum over n = Nd k-vectors for
each value of q and thus of the order of O(n2) arithmetic
operations. This becomes tedious already for relatively
small lattice sizes. It is then possible to reduce the order
down to O(n log n) by performing a so-called fast convo-
lution using fast Fourier transforms. The convolution is
calculated for all vectors q simultaneously and stored in
memory. It is also used for the calculation of the suscep-
tibilities (see below). Efficient transforms are provided
by standard packages33.

Once we have found a converged solution for the two-
particle vertex Γ, we are able to calculate nonlocal sus-
ceptibilities. For the paramagnetic case, we have

〈Sz Sz〉(Ω,q) =
1

2
(〈n↑ n↑〉 − 〈n↑ n↓〉)(Ω,q) , (43)

where 〈nσ nσ′〉(Ω,q) = χσσ′

0 (Ω,q) + χσσ′

(Ω,q). This is
valid for lattice and dual fermions. For the dual fermions,
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FIG. 8: The Bethe Salpeter equation in the three different
channels. In the calculations we considered the equations for
the particle-hole channel.

the first term is given by the bubble diagram (dual sus-
ceptibilities are marked by the tilde):

χ̃σσ′

0 (Ω,q) = −
1

βNd

∑

ω

∑

k

Gdσ
ω (k)Gdσ′

ω+Ω(k + q) , (44)

while the nontrivial part of the susceptibility, cf. Fig. 9,
is given by

χ̃σσ′

(Ω,q) =

1

β2N2d

∑

ωω′

∑

kk′

Γph0,σσ′

ωω′Ω (q)Gdσ
ω (k)Gdσ

ω+Ω(k + q) ×

×Gdσ′

ω′ (k′)Gdσ′

ω′+Ω(k′ + q) .

(45)

For the other channel, the nontrivial part of the suscep-

tibilities 〈S±S∓〉 is given by 〈c†σcσ̄c†σ̄cσ〉(Ω,q) = χσσ̄
0 +

χσσ̄. For the dual fermions,this is obtained via

χ̃σσ̄(Ω,q) =

1

β2N2d

∑

ωω′

∑

kk′

Γph1,σσ̄
ωω′Ω (q)Gdσ̄

ω (k)Gdσ
ω+Ω(k + q) ×

×Gdσ
ω′ (k′)Gdσ̄

ω′+Ω(k′ + q) .

(46)

In order to be able to compare with known results,
we need to transform the dual susceptibility to the sus-
ceptibility for the original fermions. According to Eqn.
(29), this can be achieved by first multiplying the ver-
tex by four dual Green function legs to obtain the dual
two-particle Green function and then multiplying by the
functions L and R defined in Eqns. (18,19). In order
to calculate the susceptibility 〈Sz Sz〉(Ω,q) this merely
amounts to calculate the susceptibility according to Eqns.
(43-45), but with the dual Green functions in Eqn. (45)
replaced by the modified propagators

GL = (∆ωσ − hkσ)−1g−1
ωσ Gd

ωσ

GR = Gd
ωσ g−1

ωσ (∆ωσ − hkσ)−1

(47)

Ω,q Ω, q
Γ

ph(0)

σ

σ σ′

σ′

Ω, q

Ω,q Ω, q
Γ

ph(1)

σ

σ̄ σ̄

σ

Ω, q

FIG. 9: Diagrams for the susceptibilities in the two different
particle-hole channels

(these are identical for a diagonal basis) and the Green
functions in Eqn. (44) by the lattice Green function.

The DMFT susceptibility can be straightforwardly ob-
tained since we already have the fully reducible vertex of
the local impurity problem, γ(4), at our disposal. From
this we can obtain the corresponding vertex in the spin

channel as γ
(4)
s = γ

(4)
↑↑ − γ

(4)
↑↓ . The irreducible vertex of

the impurity problem is then obtained by matrix inver-
sion using the standard relation

(γ
(4)
sωω′Ω)−1 = (γir

sωω′Ω)−1 − χ0
ωΩ δωω′ , (48)

where χ0
ωΩ = − 1

β
GD,loc

ω GD,loc
ω+Ω and GD,loc

ω =
∑

k
GD

ω (k) is

the local DMFT Green function. The vertex is obtained
by iterating the BSE

Γs
ωω′Ω(q) = γir

sωω′Ω −
1

βNd

∑

ω′′

∑

k

γir
sωω′′ΩGD

ω′′(k) ×

×GD
ω′′+Ω(k + q) Γs

ω′′ω′Ω(q) ,

(49)

where GD is the DMFT lattice Green function, as before.
The susceptibility itself is obtained using equations simi-
lar to Eqns. (44,46) with the vertex and Green functions
replaced by the appropriate DMFT quantities.

D. Two-particle properties

Now we turn to the two-particle properties. In order to
illustrate the statement that two-particle excitations are
the same for real and dual fermions, we first consider the
dual susceptibility, Eqn. (45). In Fig. 10, we show the
results for the nontrivial part χ̃zz of the dual susceptibil-
ity as a function of temperature for U = 4 and different
k-points. This calculation was performed for an 8×8 lat-
tice. The susceptibility diverges at the wave vector (π, π),
indicating a transition to the antiferromagnetic ordered
state, while at the other k-points it does not show any in-
dication for a divergence. The susceptibility of the lattice
fermions diverges at the same temperature, as expected.
We would like to note that the dual bubble diagram, Eqn.



10

        
        
         
        

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
T/t

(π, π)

(3/4π, π)

(3/4π, 3/4π)

(0, 0)

χ̃
z
z

FIG. 10: (Color online) Nontrivial part of the dual suscepti-
bility χ̃zz = 1

2
(χ̃↑↑ − χ̃↑↓) for different k-points as a function

of temperature. The divergence at q = (π, π) indicates the
antiferromagnetic instability.

FIG. 11: (Color online) The antiferromagnetic correlations
visualized in real space for β = 4.25 and β = 4.5. At temper-
atures close to the transition, the correlations become essen-
tially independent of distance.

(44) can be negative so that the dual susceptibility χ̃0+χ̃
becomes negative at high temperatures. This is due to
the fact that the spectrum of the dual Green function
need not be positive-semidefinite, which follows from the
fact that its local part exactly vanishes. Indeed, since the
dual fermions represent the nonlocal part of the lattice
fermions, they are no physical particles. However, this
does not affect the lattice susceptibility as shown below
and we did not encounter any non-analyticity problems
in all our calculations.

In the paramagnetic case the relation 1
2 (〈S+S−〉 +

〈S−S+〉) = 2〈SzSz〉 holds. We find that this relation is
very well fulfilled within our calculations. It follows from
the invariance under rotations in spin space and it can

be generally proven34 that Γ− := Γph0
σσσσ − Γph0

σσσ̄σ̄ (which
describes the interactions of the particle-hole pair in the
triplet state with spin projection σz = 0) is equal to Γph1

(which corresponds to the spin projections σz = ±1, de-
pending on the sign of σ). This identity is readily shown
to be preserved by the BSEs Eqns. (41,42) given that
γσσ̄σ̄σ = γσσσσ − γσσσ̄σ̄ holds, which is fulfilled in our

FIG. 12: (Color online) Momentum dependence of the static
susceptibility (centered at the M -point) for U = 4 and differ-
ent temperatures calculated on a 256 × 256 lattice. Top row
from left to right: β = 0.5, β = 1.0 and β = 3.0. Bottom row:
β = 4.0, β = 4.5 and β = 4.65.

calculations up to a small numerical error.
Using the definition of γ(4), Eqn. (11), one finds that

this small numerical difference can be traced back to the
error due to Monte-Carlo (MC) averaging of the two-
particle Green function: In each MC measurement, one
measures a quantity G̃12 which corresponds to the con-
tribution of the particular configuration to Green’s func-
tion (for details, see Ref. 27,28,29). The Green func-

tion G12 = 〈G̃12〉 is obtained as the MC average of this
quantity. Similarly, using Wick’s theorem, the two par-
ticle Green function χσσσ′σ′

1234 is obtained as 〈G̃σ
12G̃

σ′

34〉 −

δσσ′〈G̃σ
14G̃

σ
32〉. Thus one has χσσ̄σ̄σ

1234 = −〈G̃σ
14G̃

σ̄
32〉 and

χσσσσ
1234 − χσσσ̄σ̄

1234 = (〈G̃σ
12G̃

σ
34〉 − 〈G̃σ

14G̃
σ
32〉) − 〈G̃σ

12G̃
σ̄
34〉 .

Since the quantities G̃12 for different spins can differ even
for paramagnetic systems, the above quantities can only
be equal within the MC error.

In Fig. 11, we show the real space dependence of the
spin-spin susceptibility for the 8 × 8 lattice. At lower
temperatures, the correlations decay quickly as a func-
tion of distance, although the antiferromagnetic charac-
ter is clearly visible. At lower temperatures close to the
transition, the correlation length approaches the lattice
size, and the susceptibility becomes essentially constant
as a function of distance.

In Fig. 12 we illustrate the k-dependence of the suscep-
tibility 〈SzSz〉(Ω = 0,k). For low temperatures, the sus-
ceptibility appears to be delocalized in k-space, leading
to the fast decaying correlations as a function of distance.
However, even for the highest temperature the maximum
is located at k = (π, π), exposing the tendency to anti-
ferromagnetism. For low temperatures, the susceptibility
becomes strongly peaked in the (π, π) direction.

As far as the single-particle properties are concerned,
our approach has proven to give physically correct re-
sults. However, since the calculation of the susceptibil-
ities relies on an additional approximation, namely that
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FIG. 13: (Color online) Inverse of the antiferromagnetic sus-
ceptibility χAF = 〈Sz Sz〉(Ω = 0, q = (π, π)) as a function
of temperature as obtained from DMFT and within the dual
fermion approach for U = 4 and different lattice sizes. Here
e.g. the label 64×64 indicates the number of k-points used in
the Brillouin zone integration. The inset compares the fully
self-consistent DF result (dashed line) with the one obtained
from the first iteration of the outer loop (solid line) shown in
Fig. 2.
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FIG. 14: (Color online) The antiferromagnetic susceptibility
for U = 8. The inset shows the same on a larger scale. For
high temperatures, the dual fermion result converges to the
DMFT result.

we take the bare interaction of the dual fermions, γ(4), as
an approximation for the irreducible vertex, we need to
demonstrate that the approach still yields sensible results
for the two-particle properties.

A stringent test for this approximation is whether the
results are still an improvement compared to the DMFT.
In Figs. 13,14 we therefore plot the inverse antiferro-
magnetic susceptibility χAF = 〈SzSz〉(Ω = 0,k = (π, π))
as a function of temperature. The critical temperature
is given by the point to which the corresponding curve

extrapolates to zero. Note that the exact solution is ex-
pected to have a Néel temperature TN = 0. One might
expect that since the DF and DMFT results are rather
similar for U = 4, this also applies for the susceptibil-
ity. Still, we find that the DMFT result is systematically
below the DF result, and the DF critical temperature is
correspondingly lower than in the DMFT. This can be
interpreted as an effect of the non-local spin fluctuations
which are not accounted for in the DMFT and which sup-
press the critical temperature. In order to understand
the scaling behavior one should recognize that unlike the
DCA, which essentially is an expansion in 1/Nc (Nc is
the clustersize) and hence becomes formally exact in the
limit of infinite clusters35,36, our approach does not be-
come exact in the limit of infinite lattice sizes. Thus
we cannot reproduce the scaling behavior as observed in
DCA calculations37. This is due to the termination of the
perturbation series. On the other hand, our approach be-
comes formally exact if all diagrams are considered in the
limit of infinite lattice sizes. Since we sum a perturbation
series for auxiliary fermions, an a priori statement which
diagrams include what kind of physics in terms of the lat-
tice fermions is not possible. However, we find that the
approach is essentially converged for lattices larger than
16 × 16, setting a scale for the range of the fluctuations
included. We expect this scaling to be more significant
if either the number of diagrams considered is increased,
or the starting point is improved, i.e. the dual fermion
calculation is performed on top of an e.g. 2 × 2 cluster-
DMFT calculation.

The inset of Fig. 13 compares the antiferromagnetic
susceptibility obtained from a fully self-consistent DF cal-
culation (dashed line, with diamonds) to that obtained
from the first iteration of the outer loop, i.e. just one
inner loop as shown in Fig. 2 has been performed. The
hybridization is thus the one obtained from DMFT. One
sees that the fully converged DF result has a slightly
larger critical temperature than the intermediate result.
We have observed this tendency in all our calculations.
We attribute this to the renormalization of the hybridiza-
tion as compared to DMFT, which pronounces the effect
of the local singlet formation and thus favors antiferro-
magnetism.

In Fig. 14 we show the temperature scaling of the in-
verse susceptibility for U = 8. Here we find that almost
no scaling with the lattice size is visible. This can be
attributed to the fact that the physics of singlet forma-
tion prevails in this parameter regime and this is what
is primarily mediated by the first diagram in the pertur-
bation expansion. This is consistent with the fact that
the transition temperature is higher compared to U = 4.
We thus expect a considerable reduction of the transition
temperature when the local singlet-formation is treated
explicitly within the cluster-extension of our approach.
However, the fluctuations are still taken into account and
lead to a suppression of the critical temperature which is
somewhat more pronounced than for U = 4.
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V. CONCLUSIONS

To conclude, we have proposed a scheme to calculate
the two-particle Green function within the dual fermion
framework. This enables us to study two-particle interac-
tions in strongly correlated systems where non-local cor-
relations cannot be neglected. We formulated the Bethe-
Salpeter equations for the full vertex in the particle-
particle and particle-hole channels and proposed an ap-
proximation for practical calculations. A possible exten-
sion of this scheme has been proposed which allows the
application to superconductivity while taking also the an-
tiferromagnetic fluctuations into account. We have estab-
lished an exact relation between the two-particle Green
functions in dual and original variables, which ensures
that two-particle excitations of real and dual variables
are identical. The identity was used to transform the
dual susceptibility to the one of the original fermions.
Within our proposed approximation we have applied the
scheme to the 2D Hubbard model at half filling in the
paramagnetic phase. We find strong modifications of
the single-particle properties in our dual fermion calcula-

tions compared to the DMFT. This is encouraging given
that our calculations were performed within the single-
site formalism. Concerning the two-particle properties,
we also found an improvement compared to the DMFT.
The critical temperature is suppressed due to the incor-
poration of the non-local spin fluctuations, thus show-
ing that this approximation goes well beyond the con-
ventional DMFT scheme for calculating the two-particle
Green function. We expect a further improvement of the
results by the cluster formulation of our approach, which
explicitly takes the local singlet formation into account.
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