182 research outputs found

    Proteomic changes in serum of first onset, antidepressant drug-naïve major depression patients

    Get PDF
    Major depressive disorder (MDD) is a complex and multi-factorial disorder. Although genetic factors and other molecular aspects of MDD have been widely studied, the underlying pathological mechanisms are still mostly unknown. We sought to investigate the pathophysiology of MDD by identifying and characterising serum molecular differences and their correlation to symptom severity in first onset, antidepressant drug-naïve MDD patients. We performed an exploratory molecular profiling study on serum samples of MDD patients and controls using multiplex immunoassay and label-free liquid chromatography mass spectrometry in data independent mode (LC-MSE). We included two independent cohorts of first onset, antidepressant drug-naïve MDD patients (n = 23 and 15) and matched controls (n = 42 and 21) in our study in order to validate the results. The main outcome included the following list of circulatory molecules changing and/or correlating to symptom severity: angiotensin-converting enzyme, acute phase proteins (e.g. ferritin and serotransferrin), brain-derived neurotrophic factor, complement component C4-B, cortisol, cytokines (e.g. macrophage migration inhibitory factor and interleukin-16), extracellular newly identified receptor for advanced glycosylation end products-binding protein, growth hormone and superoxide dismutase-1. This study provides evidence of an increased pro-inflammatory and oxidative stress response, followed by a hyperactivation of the HPA-axis in the acute stages of first onset MDD, as well as a dysregulation in growth factor pathways. These findings help to elucidate MDD related pathways in more detail and further studies may lead to identification of novel drug targets, inc

    Transient Receptor Potential Channel Polymorphisms Are Associated with the Somatosensory Function in Neuropathic Pain Patients

    Get PDF
    Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz) 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K) was associated with the presence of paradoxical heat sensation (p = 0.03), and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V) with cold hypoalgesia (p = 0.0035). Two main subgroups characterized by preserved (1) and impaired (2) sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and p<0.001) and transient receptor potential vanilloid 1 1103C>G (rs222747, M315I) to cold hypaesthesia (p = 0.002), but there was absence of associations in subgroup 2. In this study we found no evidence that genetic variants of transient receptor potential channels are involved in the expression of neuropathic pain, but transient receptor potential channel polymorphisms contributed significantly to the somatosensory abnormalities of neuropathic pain patients

    Genetic modifiers in rare disorders: the case of fragile X syndrome.

    Get PDF
    Methods employed in genome-wide association studies are not feasible ways to explore genotype-phenotype associations in rare disorders due to limited statistical power. An alternative approach is to examine relationships among specific single nucleotide polymorphisms (SNPs), selected a priori, and behavioural characteristics. Here, we adopt this strategy to examine relationships between three SNPs (5-HTTLPR, MAOA, COMT) and specific clinically-relevant behaviours that are phenotypic of fragile X syndrome (FXS) but vary in severity and frequency across individuals. Sixty-four males with FXS participated in the current study. Data from standardised informant measures of challenging behaviour (defined as physical aggression, property destruction, stereotyped behaviour, and self-injury), autism symptomatology, attention-deficit-hyperactivity-disorder characteristics, repetitive behaviour and mood/interest and pleasure were compared between each SNP genotype. No association was observed between behavioural characteristics and either 5-HTTLPR (serotonin) or MAOA (monoamine oxidase) genotypes. However, compared to the COMT (dopamine) AG and GG genotypes, the AA genotype was associated with greater interest and pleasure in the environment, and with reduced risk for property destruction, stereotyped behaviour and compulsive behaviour. The results suggest that common genetic variation in the COMT genotype affecting dopamine levels in the brain may contribute to the variability of challenging and repetitive behaviours and interest and pleasure in this population. This study identifies a role for additional genetic risk in understanding the neural and genetic mechanisms contributing to phenotypic variability in neurodevelopmental disorders, and highlights the merit of investigating SNPs that are selected a priori on a theoretical basis in rare populations

    Towards a blood-based diagnostic panel for bipolar disorder

    Get PDF
    BACKGROUND: Bipolar disorder (BD) is a costly, devastating and life shortening mental disorder that is often misdiagnosed, especially on initial presentation. Misdiagnosis frequently results in ineffective treatment. We investigated the utility of a biomarker panel as a diagnostic test for BD. METHODS AND FINDINGS: We performed a meta-analysis of eight case-control studies to define a diagnostic biomarker panel for BD. After validating the panel on established BD patients, we applied it to undiagnosed BD patients. We analysed 249 BD, 122 pre-diagnostic BD, 75 pre-diagnostic schizophrenia and 90 first onset major depression disorder (MDD) patients and 371 controls. The biomarker panel was identified using ten-fold cross-validation with lasso regression applied to the 87 analytes available across the meta-analysis studies. We identified 20 protein analytes with excellent predictive performance [area under the curve (AUC)?0.90]. Importantly, the panel had a good predictive performance (AUC 0.84) to differentiate 12 misdiagnosed BD patients from 90 first onset MDD patients, and a fair to good predictive performance (AUC 0.79) to differentiate between 110 pre-diagnostic BD patients and 184 controls. We also demonstrated the disease specificity of the panel. CONCLUSIONS: An early and accurate diagnosis has the potential to delay or even prevent the onset of BD. This study demonstrates the potential utility of a biomarker panel as a diagnostic test for BD.We would like to thank all participants of this study as well as all participating centres for the collaboration and for access to the serum samples. We gratefully acknowledge support by the Stanley Medical Research Institute (no. 07R-1888). The infrastructure for the NESDA study (www.nesda.nl) has been funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (Zon-Mw, grant number 10-000-1002) and participating universities (VU University Medical Center, Leiden University Medical Center, University Medical Center Groningen). DNC, DWN and NSW efforts were funded by the Stanley Medical Research Institute and the US Department of the Army

    Gene expression down-regulation in CD90+ prostate tumor-associated stromal cells involves potential organ-specific genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prostate stroma is a key mediator of epithelial differentiation and development, and potentially plays a role in the initiation and progression of prostate cancer. The tumor-associated stroma is marked by increased expression of CD90/THY1. Isolation and characterization of these stromal cells could provide valuable insight into the biology of the tumor microenvironment.</p> <p>Methods</p> <p>Prostate CD90<sup>+ </sup>stromal fibromuscular cells from tumor specimens were isolated by cell-sorting and analyzed by DNA microarray. Dataset analysis was used to compare gene expression between histologically normal and tumor-associated stromal cells. For comparison, stromal cells were also isolated and analyzed from the urinary bladder.</p> <p>Results</p> <p>The tumor-associated stromal cells were found to have decreased expression of genes involved in smooth muscle differentiation, and those detected in prostate but not bladder. Other differential expression between the stromal cell types included that of the CXC-chemokine genes.</p> <p>Conclusion</p> <p>CD90<sup>+ </sup>prostate tumor-associated stromal cells differed from their normal counterpart in expression of multiple genes, some of which are potentially involved in organ development.</p

    Gene expression patterns in the hippocampus and amygdala of endogenous depression and chronic stress models

    Get PDF
    The etiology of depression is still poorly understood, but two major causative hypotheses have been put forth: the monoamine deficiency and the stress hypotheses of depression. We evaluate these hypotheses using animal models of endogenous depression and chronic stress. The endogenously depressed rat and its control strain were developed by bidirectional selective breeding from the Wistar–Kyoto (WKY) rat, an accepted model of major depressive disorder (MDD). The WKY More Immobile (WMI) substrain shows high immobility/despair-like behavior in the forced swim test (FST), while the control substrain, WKY Less Immobile (WLI), shows no depressive behavior in the FST. Chronic stress responses were investigated by using Brown Norway, Fischer 344, Lewis and WKY, genetically and behaviorally distinct strains of rats. Animals were either not stressed (NS) or exposed to chronic restraint stress (CRS). Genome-wide microarray analyses identified differentially expressed genes in hippocampi and amygdalae of the endogenous depression and the chronic stress models. No significant difference was observed in the expression of monoaminergic transmission-related genes in either model. Furthermore, very few genes showed overlapping changes in the WMI vs WLI and CRS vs NS comparisons, strongly suggesting divergence between endogenous depressive behavior- and chronic stress-related molecular mechanisms. Taken together, these results posit that although chronic stress may induce depressive behavior, its molecular underpinnings differ from those of endogenous depression in animals and possibly in humans, suggesting the need for different treatments. The identification of novel endogenous depression-related and chronic stress response genes suggests that unexplored molecular mechanisms could be targeted for the development of novel therapeutic agents

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link
    • …
    corecore